These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28419223)

  • 1. Removal of batch effects using distribution-matching residual networks.
    Shaham U; Stanton KP; Zhao J; Li H; Raddassi K; Montgomery R; Kluger Y
    Bioinformatics; 2017 Aug; 33(16):2539-2546. PubMed ID: 28419223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gating mass cytometry data by deep learning.
    Li H; Shaham U; Stanton KP; Yao Y; Montgomery RR; Kluger Y
    Bioinformatics; 2017 Nov; 33(21):3423-3430. PubMed ID: 29036374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.
    Ma Y; Pei Y
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450015. PubMed ID: 39036845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework.
    Zhan X; Yin Y; Zhang H
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity.
    Yan X; Zheng R; Wu F; Li M
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36821425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated cell type discovery and classification through knowledge transfer.
    Lee HC; Kosoy R; Becker CE; Dudley JT; Kidd BA
    Bioinformatics; 2017 Jun; 33(11):1689-1695. PubMed ID: 28158442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting retinal neural and stromal cell classes and ganglion cell subtypes based on transcriptome data with deep transfer learning.
    Madadi Y; Sun J; Chen H; Williams R; Yousefi S
    Bioinformatics; 2022 Sep; 38(18):4321-4329. PubMed ID: 35876552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting hidden batch factors through data-adaptive adjustment for biological effects.
    Yi H; Raman AT; Zhang H; Allen GI; Liu Z
    Bioinformatics; 2018 Apr; 34(7):1141-1147. PubMed ID: 29617963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Adversarial Alignment of Single-Cell RNA-seq Data.
    Ge S; Wang H; Alavi A; Xing E; Bar-Joseph Z
    J Comput Biol; 2021 May; 28(5):501-513. PubMed ID: 33470876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration.
    Wang W; Tan H; Sun M; Han Y; Chen W; Qiu S; Zheng K; Wei G; Ni T
    Nucleic Acids Res; 2021 May; 49(9):e54. PubMed ID: 33619563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.