BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28419258)

  • 41. Recognition of analogous and homologous protein folds--assessment of prediction success and associated alignment accuracy using empirical substitution matrices.
    Russell RB; Saqi MA; Bates PA; Sayle RA; Sternberg MJ
    Protein Eng; 1998 Jan; 11(1):1-9. PubMed ID: 9579654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ResCNNT-fold: Combining residual convolutional neural network and Transformer for protein fold recognition from language model embeddings.
    Qin X; Liu M; Liu G
    Comput Biol Med; 2023 Nov; 166():107571. PubMed ID: 37864911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein threading by linear programming.
    Xu J; Li M; Lin G; Kim D; Xu Y
    Pac Symp Biocomput; 2003; ():264-75. PubMed ID: 12603034
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving Protein Fold Recognition by Deep Learning Networks.
    Jo T; Hou J; Eickholt J; Cheng J
    Sci Rep; 2015 Dec; 5():17573. PubMed ID: 26634993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PROSPECT II: protein structure prediction program for genome-scale applications.
    Kim D; Xu D; Guo JT; Ellrott K; Xu Y
    Protein Eng; 2003 Sep; 16(9):641-50. PubMed ID: 14560049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks.
    Villegas-Morcillo A; Gomez AM; Morales-Cordovilla JA; Sanchez V
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2848-2854. PubMed ID: 32750896
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A spectral approach to protein structure alignment.
    Shibberu Y; Holder A
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):867-75. PubMed ID: 21301031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.
    de Oliveira SHP; Law EC; Shi J; Deane CM
    Bioinformatics; 2018 Apr; 34(7):1132-1140. PubMed ID: 29136098
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving sequence-based fold recognition by using 3D model quality assessment.
    Pettitt CS; McGuffin LJ; Jones DT
    Bioinformatics; 2005 Sep; 21(17):3509-15. PubMed ID: 15955780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CONTSOR--a new knowledge-based fold recognition potential, based on side chain orientation and contacts between residue terminal groups.
    Vishnepolsky B; Pirtskhalava M
    Protein Sci; 2012 Jan; 21(1):134-41. PubMed ID: 22057923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function.
    Pietal MJ; Bujnicki JM; Kozlowski LP
    Bioinformatics; 2015 Nov; 31(21):3499-505. PubMed ID: 26130575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments.
    Saini HK; Fischer D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W499-502. PubMed ID: 17537819
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forecasting residue-residue contact prediction accuracy.
    Wozniak PP; Konopka BM; Xu J; Vriend G; Kotulska M
    Bioinformatics; 2017 Nov; 33(21):3405-3414. PubMed ID: 29036497
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Granular clustering of de novo protein models.
    Guzenko D; Strelkov SV
    Bioinformatics; 2017 Feb; 33(3):390-396. PubMed ID: 28171609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins.
    Bhattacharya S; Roche R; Moussad B; Bhattacharya D
    Proteins; 2022 Feb; 90(2):579-588. PubMed ID: 34599831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.