These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28419322)

  • 1. DOSIMETRIC EVALUATION OF LASER-DRIVEN X-RAY AND NEUTRON SOURCES UTILIZING XG-III PS LASER WITH PEAK POWER OF 300 TERAWATT.
    Yang B; Qiu R; Jiao J; Lu W; Zhang Z; Zhou W; Ma C; Zhang H; Li J
    Radiat Prot Dosimetry; 2017 Dec; 177(3):302-309. PubMed ID: 28419322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shielding design for a laser-accelerated proton therapy system.
    Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM
    Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation protection modelling for 2.5 Petawatt-laser production of ultrashort x-ray, proton and ion bunches: Monte Carlo model of the Munich CALA facility.
    Englbrecht FS; Döpp A; Hartmann J; Lindner FH; Groß ML; Wirth HF; Thirolf PG; Karsch S; Schreiber J; Parodi K; Dedes G
    J Radiol Prot; 2020 Sep; 40(4):. PubMed ID: 32702682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
    Hsu YC; Lai BL; Sheu RJ
    Radiat Prot Dosimetry; 2016 Jan; 168(1):124-33. PubMed ID: 25628454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD
    Phys Med Biol; 2005 Jan; 50(1):N1-10. PubMed ID: 15715431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shielding activation of petawatt laser facilities in Romania: a FLUKA preliminary evaluation.
    Florescu GM; Duliu OG
    Radiat Prot Dosimetry; 2016 Mar; 168(4):566-9. PubMed ID: 26224739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser.
    Fröhlich L; Casarin K; Vascotto A
    Radiat Prot Dosimetry; 2015 Feb; 163(2):141-7. PubMed ID: 24757175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Monte Carlo calculated surface doses for megavoltage photon beams.
    Abdel-Rahman W; Seuntjens JP; Verhaegen F; Deblois F; Podgorsak EB
    Med Phys; 2005 Jan; 32(1):286-98. PubMed ID: 15719980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of laser-driven ion sources and their applications.
    Daido H; Nishiuchi M; Pirozhkov AS
    Rep Prog Phys; 2012 May; 75(5):056401. PubMed ID: 22790586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons.
    Beyreuther E; Enghardt W; Kaluza M; Karsch L; Laschinsky L; Lessmann E; Nicolai M; Pawelke J; Richter C; Sauerbrey R; Schlenvoigt HP; Baumann M
    Med Phys; 2010 Apr; 37(4):1392-400. PubMed ID: 20443460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a new IRSN thermal neutron field facility using Monte-Carlo simulations.
    Lacoste V
    Radiat Prot Dosimetry; 2007; 126(1-4):58-63. PubMed ID: 17578877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam.
    Mesbahi A
    Appl Radiat Isot; 2009 Jan; 67(1):55-60. PubMed ID: 18760613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COMPREHENSIVE RADIATION DOSE MEASUREMENTS AND MONTE CARLO SIMULATION FOR THE 7Li(p,n) ACCELERATOR NEUTRON FIELD.
    Darvish-Molla S; Prestwich WV; Byun SH
    Radiat Prot Dosimetry; 2016 Dec; 171(4):421-430. PubMed ID: 26464524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon doses in NPL standard neutron fields.
    Roberts NJ; Horwood NA; McKay CJ
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):157-60. PubMed ID: 24126485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the irradiation doses from ultrashort laser-solid interactions using different temperature scalings at moderate laser intensities.
    Barkauskas V; Plukis A
    J Radiol Prot; 2022 Jan; 42(1):. PubMed ID: 34929682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time dynamics of the dose deposited by relativistic ultra-short electron beams.
    Horváth D; Grittani G; Precek M; Versaci R; Bulanov SV; Olšovcová V
    Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37797651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.