These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2841939)

  • 21. The cytochrome P450 2B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge-pairing.
    Voznesensky AI; Schenkman JB
    J Biol Chem; 1992 Jul; 267(21):14669-76. PubMed ID: 1321814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of cytochrome c-binding domain on NADPH-cytochrome P-450 reductase.
    Nisimoto Y
    J Biol Chem; 1986 Oct; 261(30):14232-9. PubMed ID: 3021733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of 3'-azido-2',3'-dideoxynucleosides to their 3'-amino metabolite is mediated by cytochrome P-450 and NADPH-cytochrome P-450 reductase in rat liver microsomes.
    Cretton EM; Sommadossi JP
    Drug Metab Dispos; 1993; 21(5):946-50. PubMed ID: 7902260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative studies on the accessibility and functional importance of tyrosine residues in cytochrome P-450 isozymes.
    Jänig GR; Kraft R; Rabe H; Makower A; Ruckpaul K
    Biomed Biochim Acta; 1988; 47(7):565-79. PubMed ID: 3202847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The study of the active site of cytochrome P-450 LM2 using the chemical modification of tyrosine residues by tetranitromethane].
    Usanov SA; Enig GR; Rukpaul' K
    Biokhimiia; 1984 Jun; 49(6):889-98. PubMed ID: 6466739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual role of phospholipid in the reconstitution of cytochrome P-450 LM2-dependent activities.
    Causey KM; Eyer CS; Backes WL
    Mol Pharmacol; 1990 Jul; 38(1):134-42. PubMed ID: 2164629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Oxidative modification of cytochrome P-450 during its function. I. Comparative study of the inactivation of cytochrome P-450 LM2 in various systems].
    Tret'iakova LZ; Adrianov NV; Dzhuzenova ChS; Dovgiĭ AI; Archakov AI
    Biokhimiia; 1991 Jul; 56(7):1190-9. PubMed ID: 1932346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of a water-soluble carbodiimide to cross-link cytochrome c to plastocyanin.
    Geren LM; Stonehuerner J; Davis DJ; Millett F
    Biochim Biophys Acta; 1983 Jul; 724(1):62-8. PubMed ID: 6307354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1.
    Keyes SR; Fracasso PM; Heimbrook DC; Rockwell S; Sligar SG; Sartorelli AC
    Cancer Res; 1984 Dec; 44(12 Pt 1):5638-43. PubMed ID: 6437671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes.
    Jeffery EH
    Mol Pharmacol; 1983 Mar; 23(2):467-73. PubMed ID: 6132332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Inactivation of sodium dithionite reduced cytochromes P-450 of different origins].
    Mokhosoev IM; Kuznetsova GP; Al'terman MA; Bachmanova GI; Archakov AI
    Biokhimiia; 1987 Oct; 52(10):1649-58. PubMed ID: 3427131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of an NADPH-cytochrome P450 reductase derived peptide involved in binding to cytochrome P450.
    Nadler SG; Strobel HW
    Arch Biochem Biophys; 1991 Nov; 290(2):277-84. PubMed ID: 1929397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective inactivation of rat lung and liver microsomal NADPH-cytochrome c reductase by acrolein.
    Patel JM; Ortiz E; Kolmstetter C; Leibman KC
    Drug Metab Dispos; 1984; 12(4):460-3. PubMed ID: 6148213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of hepatic microsomal NADPH cytochrome c reductase from rhesus monkey (Macaca mulatta).
    Ojha V; Kohli KK
    Biochem Mol Biol Int; 1994 Jan; 32(1):55-65. PubMed ID: 8012290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible modification of cysteine residues of NADPH-cytochrome P-450 reductase.
    Yelinova VI; Weiner LM; Slepneva IA; Levina AS
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1044-8. PubMed ID: 8391797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-oxidation of phentermine to N-hydroxyphentermine by a reconstituted cytochrome P-450 oxidase system from rabbit liver.
    Duncan JD; Cho AK
    Mol Pharmacol; 1982 Sep; 22(2):235-8. PubMed ID: 6815477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical characteristics of purified beef liver NADPH-cytochrome P450 reductase.
    Arinç E; Celik H
    J Biochem Mol Toxicol; 2002; 16(6):286-97. PubMed ID: 12481304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical characterization of protein-protein interactions between cytochrome P-450 and cytochrome b5.
    Tamburini PP; White RE; Schenkman JB
    J Biol Chem; 1985 Apr; 260(7):4007-15. PubMed ID: 3920211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.