These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 28419481)

  • 41. Exploring Large Domain Motions in Proteins Using Atomistic Molecular Dynamics with Enhanced Conformational Sampling.
    Dokainish HM; Sugita Y
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383937
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of protein interactions: co-crystalized protein-protein interfaces are nearly as good as holo proteins in rigid-body ligand docking.
    Belkin S; Kundrotas PJ; Vakser IA
    J Comput Aided Mol Des; 2018 Jul; 32(7):769-779. PubMed ID: 30003468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular modelling prediction of ligand binding site flexibility.
    Yang AY; Källblad P; Mancera RL
    J Comput Aided Mol Des; 2004 Apr; 18(4):235-50. PubMed ID: 15562988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A; Orro A; Carlsson J
    J Chem Inf Model; 2018 Feb; 58(2):350-361. PubMed ID: 29308882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans.
    Gagné D; Narayanan C; Nguyen-Thi N; Roux LD; Bernard DN; Brunzelle JS; Couture JF; Agarwal PK; Doucet N
    Biochemistry; 2016 Aug; 55(30):4184-96. PubMed ID: 27387012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accounting for induced-fit effects in docking: what is possible and what is not?
    Sotriffer CA
    Curr Top Med Chem; 2011; 11(2):179-91. PubMed ID: 20939789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic ligand-induced-fit simulation via enhanced conformational samplings and ensemble dockings: a survivin example.
    Park IH; Li C
    J Phys Chem B; 2010 Apr; 114(15):5144-53. PubMed ID: 20337446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs.
    Tarcsay A; Paragi G; Vass M; Jójárt B; Bogár F; Keserű GM
    J Chem Inf Model; 2013 Nov; 53(11):2990-9. PubMed ID: 24116387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.
    Bhakat S; Åberg E; Söderhjelm P
    J Comput Aided Mol Des; 2018 Jan; 32(1):59-73. PubMed ID: 29052792
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the open conformations of protein kinases using molecular dynamics simulations.
    Bjarnadottir U; Nielsen JE
    Biopolymers; 2012 Jan; 97(1):65-72. PubMed ID: 21858778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila.
    Kadowaki MAS; Higasi P; de Godoy MO; Prade RA; Polikarpov I
    FEBS J; 2018 Feb; 285(3):559-579. PubMed ID: 29222836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing flexibility and "induced-fit" phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations.
    Sotriffer CA; Krämer O; Klebe G
    Proteins; 2004 Jul; 56(1):52-66. PubMed ID: 15162486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CHARMM-GUI-Based Induced Fit Docking Workflow to Generate Reliable Protein-Ligand Binding Modes.
    Guterres H; Im W
    J Chem Inf Model; 2023 Aug; 63(15):4772-4779. PubMed ID: 37462607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design.
    Grebner C; Iegre J; Ulander J; Edman K; Hogner A; Tyrchan C
    J Chem Inf Model; 2016 Apr; 56(4):774-87. PubMed ID: 26974351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interplay between conformational selection and induced fit in multidomain protein-ligand binding probed by paramagnetic relaxation enhancement.
    Clore GM
    Biophys Chem; 2014 Feb; 186():3-12. PubMed ID: 24070540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conformational selection in silico: loop latching motions and ligand binding in enzymes.
    Wong S; Jacobson MP
    Proteins; 2008 Apr; 71(1):153-64. PubMed ID: 17932934
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR.
    Egea PF; Rochel N; Birck C; Vachette P; Timmins PA; Moras D
    J Mol Biol; 2001 Mar; 307(2):557-76. PubMed ID: 11254382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Receptor flexibility in de novo ligand design and docking.
    Alberts IL; Todorov NP; Dean PM
    J Med Chem; 2005 Oct; 48(21):6585-96. PubMed ID: 16220975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization.
    Carlsson P; Koehler KF; Nilsson L
    Mol Endocrinol; 2005 Aug; 19(8):1960-77. PubMed ID: 15774500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.