These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28419507)

  • 1. A rapid solvent accessible surface area estimator for coarse grained molecular simulations.
    Wei S; Brooks CL; Frank AT
    J Comput Chem; 2017 Jun; 38(15):1270-1274. PubMed ID: 28419507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Estimation of Solvent Accessible Surface Area for Coarse-Grained Biomolecular Structures with Deep Learning.
    Dong T; Gong T; Li W
    J Phys Chem B; 2021 Aug; 125(33):9490-9498. PubMed ID: 34383495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states.
    Ali SA; Hassan MI; Islam A; Ahmad F
    Curr Protein Pept Sci; 2014; 15(5):456-76. PubMed ID: 24678666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.
    Lee MS; Olson MA
    J Chem Phys; 2013 Jul; 139(4):044119. PubMed ID: 23901972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Pairwise Approximation of Solvent Accessible Surface Area for Implicit Solvent Simulations of Proteins on CPUs and GPUs.
    Huang H; Simmerling C
    J Chem Theory Comput; 2018 Nov; 14(11):5797-5814. PubMed ID: 30303377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a fast implicit solvent model for molecular dynamics simulations.
    Ferrara P; Apostolakis J; Caflisch A
    Proteins; 2002 Jan; 46(1):24-33. PubMed ID: 11746700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations.
    Guvench O; Brooks CL
    J Comput Chem; 2004 Jun; 25(8):1005-14. PubMed ID: 15067676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of implicit modeling of nonpolar solvation on protein folding simulations.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18410-18419. PubMed ID: 29946610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Necessity of high-resolution for coarse-grained modeling of flexible proteins.
    Jia Z; Chen J
    J Comput Chem; 2016 Jul; 37(18):1725-33. PubMed ID: 27130454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the development and application of implicit solvent models in biomolecule simulations.
    Feig M; Brooks CL
    Curr Opin Struct Biol; 2004 Apr; 14(2):217-24. PubMed ID: 15093837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
    Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA
    J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained simulations of protein aggregation.
    Cellmer T; Fawzi NL
    Methods Mol Biol; 2012; 899():453-70. PubMed ID: 22735969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energies of solvation in the context of protein folding: Implications for implicit and explicit solvent models.
    Cumberworth A; Bui JM; Gsponer J
    J Comput Chem; 2016 Mar; 37(7):629-40. PubMed ID: 26558440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replica exchange molecular dynamics simulations of coarse-grained proteins in implicit solvent.
    Chebaro Y; Dong X; Laghaei R; Derreumaux P; Mousseau N
    J Phys Chem B; 2009 Jan; 113(1):267-74. PubMed ID: 19067549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Martinizing" the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins.
    Ricci CG; Li B; Cheng LT; Dzubiella J; McCammon JA
    J Phys Chem B; 2017 Jul; 121(27):6538-6548. PubMed ID: 28613904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.
    Hu J; Chen T; Wang M; Chan HS; Zhang Z
    Phys Chem Chem Phys; 2017 May; 19(21):13629-13639. PubMed ID: 28530269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.