BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28419522)

  • 1. A general empirical model for renal drug handling in pharmacokinetic analyses.
    Wright DFB; Duffull SB
    Br J Clin Pharmacol; 2017 Sep; 83(9):1869-1872. PubMed ID: 28419522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the intact nephron hypothesis provide a reasonable model for metformin dosing in chronic kidney disease?
    Pradhan S; Duffull SB; Wilson LC; Kuan IHS; Walker RJ; Putt TL; Schollum JBW; Wright DFB
    Br J Clin Pharmacol; 2021 Dec; 87(12):4868-4876. PubMed ID: 34004027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intact nephron hypothesis as a model for renal drug handling.
    Pradhan S; Duffull SB; Walker RJ; Wright DFB
    Eur J Clin Pharmacol; 2019 Feb; 75(2):147-156. PubMed ID: 30298363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological modelling of renal drug clearance.
    Janků I
    Eur J Clin Pharmacol; 1993; 44(6):513-9. PubMed ID: 8405004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles and clinical application of assessing alterations in renal elimination pathways.
    Tett SE; Kirkpatrick CM; Gross AS; McLachlan AJ
    Clin Pharmacokinet; 2003; 42(14):1193-211. PubMed ID: 14606929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Secretory Clearance Follow Glomerular Filtration Rate in Chronic Kidney Diseases? Reconsidering the Intact Nephron Hypothesis.
    Chapron A; Shen DD; Kestenbaum BR; Robinson-Cohen C; Himmelfarb J; Yeung CK
    Clin Transl Sci; 2017 Sep; 10(5):395-403. PubMed ID: 28675584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of drug handling by the kidney using a physiological model of renal drug clearance.
    Janků I; Zvára K
    Eur J Clin Pharmacol; 1993; 44(6):521-4. PubMed ID: 8405005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of designs for renal drug studies based on the European Medicines Agency and Food and Drug Administration guidelines for drugs that are predominantly secreted.
    Pradhan S; Wright DFB; Duffull SB
    Br J Clin Pharmacol; 2021 Mar; 87(3):1401-1410. PubMed ID: 32857419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of the degree of renal damage on p-aminohippuric acid and inulin clearances in rats.
    Gloff CA; Benet LZ
    J Pharmacokinet Biopharm; 1989 Apr; 17(2):169-77. PubMed ID: 2795454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pharmacokinetic bases of dosage adaptation of drugs in renal insufficiency].
    Lesne M
    J Pharm Belg; 1988; 43(3):212-32. PubMed ID: 3171871
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of renal function equations to predict amikacin clearance.
    Sáez Fernández EM; Pérez-Blanco JS; Lanao JM; Calvo MV; Martín-Suárez A
    Expert Rev Clin Pharmacol; 2019 Aug; 12(8):805-813. PubMed ID: 31242039
    [No Abstract]   [Full Text] [Related]  

  • 12. Pharmacokinetics of dexrazoxane in subjects with impaired kidney function.
    Brier ME; Gaylor SK; McGovren JP; Glue P; Fang A; Aronoff GR
    J Clin Pharmacol; 2011 May; 51(5):731-8. PubMed ID: 20484616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the renal clearance of cimetidine using endogenous N-1-methylnicotinamide.
    Maiza A; Daley-Yates PT
    J Pharmacokinet Biopharm; 1991 Apr; 19(2):175-88. PubMed ID: 1826532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Aztreonam Dosing Regimens in Patients With Normal and Impaired Renal Function: A Population Pharmacokinetic Modeling and Monte Carlo Simulation Analysis.
    Xu H; Zhou W; Zhou D; Li J; Al-Huniti N
    J Clin Pharmacol; 2017 Mar; 57(3):336-344. PubMed ID: 27530649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic modeling of hepatocyte growth factor in experimental animals and humans.
    Sugiura T; Takahashi S; Sano K; Abe T; Fukuta K; Adachi K; Nakamura T; Matsumoto K; Nakamichi N; Kato Y
    J Pharm Sci; 2013 Jan; 102(1):237-49. PubMed ID: 23047829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical pharmacokinetics of gabapentin after administration of gabapentin enacarbil extended-release tablets in patients with varying degrees of renal function using data from an open-label, single-dose pharmacokinetic study.
    Lal R; Sukbuntherng J; Luo W; Chen D; Blumenthal R; Ho J; Cundy KC
    Clin Ther; 2012 Jan; 34(1):201-13. PubMed ID: 22206794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive renal insufficiency induces increasing protection against ischemic acute renal failure.
    Zager RA; Baltes LA
    J Lab Clin Med; 1984 Apr; 103(4):511-23. PubMed ID: 6699471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional adaptation to reduction in renal mass.
    Hayslett JP
    Physiol Rev; 1979 Jan; 59(1):137-64. PubMed ID: 220646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multinephron dynamics on the renal vascular network.
    Marsh DJ; Wexler AS; Brazhe A; Postnov DE; Sosnovtseva OV; Holstein-Rathlou NH
    Am J Physiol Renal Physiol; 2013 Jan; 304(1):F88-F102. PubMed ID: 22975020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pathologic physiology of chronic Bright's disease. An exposition of the "intact nephron hypothesis".
    Bricker NS; Morrin PA; Kime SW
    J Am Soc Nephrol; 1997 Sep; 8(9):1470-6. PubMed ID: 9294841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.