These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28419685)

  • 1. Scaffolds for epithelial tissue engineering customized in elastomeric molds.
    Abdallah MN; Abdollahi S; Laurenti M; Fang D; Tran SD; Cerruti M; Tamimi F
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):880-890. PubMed ID: 28419685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of liquid pore precursors on morphology and mechanical properties of 3D scaffolds obtained by dry inversion phase method.
    Kruk A; Gadomska-Gajadhur A; Rykaczewska I; Dulnik J; Ruśkowski P; Synoradzki L
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1079-1087. PubMed ID: 30184326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.
    Rouholamin D; van Grunsven W; Reilly GC; Smith PJ
    Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.
    Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F
    Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine.
    Liu Y; Nelson T; Chakroff J; Cromeens B; Johnson J; Lannutti J; Besner GE
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):750-760. PubMed ID: 30270503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.
    Alemán-Domínguez ME; Giusto E; Ortega Z; Tamaddon M; Benítez AN; Liu C
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):521-528. PubMed ID: 29717804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering.
    Shamirzaei Jeshvaghani E; Ghasemi-Mobarakeh L; Mansurnezhad R; Ajalloueian F; Kharaziha M; Dinari M; Sami Jokandan M; Chronakis IS
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2371-2383. PubMed ID: 29168916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric scaffolds in tissue engineering: a literature review.
    Jafari M; Paknejad Z; Rad MR; Motamedian SR; Eghbal MJ; Nadjmi N; Khojasteh A
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):431-459. PubMed ID: 26496456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
    Sempertegui ND; Narkhede AA; Thomas V; Rao SS
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible porous titanium scaffolds produced using a novel space holder technique.
    Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size.
    Ghosh S; Gutierrez V; Fernández C; Rodriguez-Perez MA; Viana JC; Reis RL; Mano JF
    Acta Biomater; 2008 Jul; 4(4):950-9. PubMed ID: 18331817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size.
    Li X; Ghavidel Mehr N; Guzmán-Morales J; Favis BD; De Crescenzo G; Yakandawala N; Hoemann CD
    J Biomed Mater Res A; 2017 Aug; 105(8):2171-2181. PubMed ID: 28380658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of printed PLA scaffolds for bone tissue engineering.
    Grémare A; Guduric V; Bareille R; Heroguez V; Latour S; L'heureux N; Fricain JC; Catros S; Le Nihouannen D
    J Biomed Mater Res A; 2018 Apr; 106(4):887-894. PubMed ID: 29105943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro.
    Cai X; Ten Hoopen S; Zhang W; Yi C; Yang W; Yang F; Jansen JA; Walboomers XF; Yelick PC
    J Biomed Mater Res A; 2017 Sep; 105(9):2597-2607. PubMed ID: 28544201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering.
    Türkkan S; Atila D; Akdağ A; Tezcaner A
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2625-2635. PubMed ID: 29360269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering.
    Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V
    Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.
    Bhaskar B; Owen R; Bahmaee H; Wally Z; Sreenivasa Rao P; Reilly GC
    J Biomed Mater Res A; 2018 May; 106(5):1334-1340. PubMed ID: 29316238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional-Printed Poly-L-Lactic Acid Scaffolds with Different Pore Sizes Influence Periosteal Distraction Osteogenesis of a Rabbit Skull.
    Zhao D; Jiang W; Wang Y; Wang C; Zhang X; Li Q; Han D
    Biomed Res Int; 2020; 2020():7381391. PubMed ID: 32382570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.