These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 28419704)
1. Robustness of a model microbial community emerges from population structure among single cells of a clonal population. Thompson AW; Turkarslan S; Arens CE; López García de Lomana A; Raman AV; Stahl DA; Baliga NS Environ Microbiol; 2017 Aug; 19(8):3059-3069. PubMed ID: 28419704 [TBL] [Abstract][Full Text] [Related]
2. Mechanism for microbial population collapse in a fluctuating resource environment. Turkarslan S; Raman AV; Thompson AW; Arens CE; Gillespie MA; von Netzer F; Hillesland KL; Stolyar S; López García de Lomana A; Reiss DJ; Gorman-Lewis D; Zane GM; Ranish JA; Wall JD; Stahl DA; Baliga NS Mol Syst Biol; 2017 Mar; 13(3):919. PubMed ID: 28320772 [TBL] [Abstract][Full Text] [Related]
3. The electron transfer system of syntrophically grown Desulfovibrio vulgaris. Walker CB; He Z; Yang ZK; Ringbauer JA; He Q; Zhou J; Voordouw G; Wall JD; Arkin AP; Hazen TC; Stolyar S; Stahl DA J Bacteriol; 2009 Sep; 191(18):5793-801. PubMed ID: 19581361 [TBL] [Abstract][Full Text] [Related]
4. Metabolic modeling of a mutualistic microbial community. Stolyar S; Van Dien S; Hillesland KL; Pinel N; Lie TJ; Leigh JA; Stahl DA Mol Syst Biol; 2007; 3():92. PubMed ID: 17353934 [TBL] [Abstract][Full Text] [Related]
7. Erosion of functional independence early in the evolution of a microbial mutualism. Hillesland KL; Lim S; Flowers JJ; Turkarslan S; Pinel N; Zane GM; Elliott N; Qin Y; Wu L; Baliga NS; Zhou J; Wall JD; Stahl DA Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14822-7. PubMed ID: 25267659 [TBL] [Abstract][Full Text] [Related]
8. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Hillesland KL; Stahl DA Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2124-9. PubMed ID: 20133857 [TBL] [Abstract][Full Text] [Related]
9. Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O Schoeffler M; Gaudin AL; Ramel F; Valette O; Denis Y; Hania WB; Hirschler-Réa A; Dolla A Environ Microbiol; 2019 Jan; 21(1):360-373. PubMed ID: 30394641 [TBL] [Abstract][Full Text] [Related]
10. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Zhou A; Lau R; Baran R; Ma J; von Netzer F; Shi W; Gorman-Lewis D; Kempher ML; He Z; Qin Y; Shi Z; Zane GM; Wu L; Bowen BP; Northen TR; Hillesland KL; Stahl DA; Wall JD; Arkin AP; Zhou J mBio; 2017 Nov; 8(6):. PubMed ID: 29138306 [TBL] [Abstract][Full Text] [Related]
11. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri. Qi Z; Pei G; Chen L; Zhang W Sci Rep; 2014 Dec; 4():7478. PubMed ID: 25504148 [TBL] [Abstract][Full Text] [Related]
12. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism. Plugge CM; Scholten JCM; Culley DE; Nie L; Brockman FJ; Zhang W Microbiology (Reading); 2010 Sep; 156(Pt 9):2746-2756. PubMed ID: 20576691 [TBL] [Abstract][Full Text] [Related]
13. Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Lee MH; Caffrey SM; Voordouw JK; Voordouw G Appl Microbiol Biotechnol; 2010 Jul; 87(3):1109-18. PubMed ID: 20437234 [TBL] [Abstract][Full Text] [Related]
14. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis. He Q; Huang KH; He Z; Alm EJ; Fields MW; Hazen TC; Arkin AP; Wall JD; Zhou J Appl Environ Microbiol; 2006 Jun; 72(6):4370-81. PubMed ID: 16751553 [TBL] [Abstract][Full Text] [Related]
15. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Clark ME; He Q; He Z; Huang KH; Alm EJ; Wan XF; Hazen TC; Arkin AP; Wall JD; Zhou JZ; Fields MW Appl Environ Microbiol; 2006 Aug; 72(8):5578-88. PubMed ID: 16885312 [TBL] [Abstract][Full Text] [Related]
16. Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Fud R; Voordouw G Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1815-1826. PubMed ID: 9202456 [TBL] [Abstract][Full Text] [Related]
17. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases. Ramel F; Brasseur G; Pieulle L; Valette O; Hirschler-Réa A; Fardeau ML; Dolla A PLoS One; 2015; 10(4):e0123455. PubMed ID: 25837676 [TBL] [Abstract][Full Text] [Related]
18. Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris. Franco LC; Steinbeisser S; Zane GM; Wall JD; Fields MW Appl Microbiol Biotechnol; 2018 Mar; 102(6):2839-2850. PubMed ID: 29429007 [TBL] [Abstract][Full Text] [Related]
19. Sulfur isotope fractionation during the evolutionary adaptation of a sulfate-reducing bacterium. Pellerin A; Anderson-Trocmé L; Whyte LG; Zane GM; Wall JD; Wing BA Appl Environ Microbiol; 2015 Apr; 81(8):2676-89. PubMed ID: 25662968 [TBL] [Abstract][Full Text] [Related]
20. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. da Silva SM; Voordouw J; Leitão C; Martins M; Voordouw G; Pereira IAC Microbiology (Reading); 2013 Aug; 159(Pt 8):1760-1769. PubMed ID: 23728629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]