These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28419803)
1. Hydropersulfides: H-Atom Transfer Agents Par Excellence. Chauvin JR; Griesser M; Pratt DA J Am Chem Soc; 2017 May; 139(18):6484-6493. PubMed ID: 28419803 [TBL] [Abstract][Full Text] [Related]
2. Recent Insights on Hydrogen Atom Transfer in the Inhibition of Hydrocarbon Autoxidation. Poon JF; Pratt DA Acc Chem Res; 2018 Sep; 51(9):1996-2005. PubMed ID: 30035527 [TBL] [Abstract][Full Text] [Related]
3. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer. Anglada JM; Crehuet R; Adhikari S; Francisco JS; Xia Y Phys Chem Chem Phys; 2018 Feb; 20(7):4793-4804. PubMed ID: 29383342 [TBL] [Abstract][Full Text] [Related]
4. The hydrogen atom transfer reactivity of sulfinic acids. Griesser M; Chauvin JR; Pratt DA Chem Sci; 2018 Sep; 9(36):7218-7229. PubMed ID: 30288241 [TBL] [Abstract][Full Text] [Related]
5. Hydropersulfides Inhibit Lipid Peroxidation and Protect Cells from Ferroptosis. Wu Z; Khodade VS; Chauvin JR; Rodriguez D; Toscano JP; Pratt DA J Am Chem Soc; 2022 Aug; 144(34):15825-15837. PubMed ID: 35977425 [TBL] [Abstract][Full Text] [Related]
6. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Bianco CL; Chavez TA; Sosa V; Saund SS; Nguyen QNN; Tantillo DJ; Ichimura AS; Toscano JP; Fukuto JM Free Radic Biol Med; 2016 Dec; 101():20-31. PubMed ID: 27677567 [TBL] [Abstract][Full Text] [Related]
7. Redox chemistry of selenenic acids and the insight it brings on transition state geometry in the reactions of peroxyl radicals. Zielinski Z; Presseau N; Amorati R; Valgimigli L; Pratt DA J Am Chem Soc; 2014 Jan; 136(4):1570-8. PubMed ID: 24383573 [TBL] [Abstract][Full Text] [Related]
8. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues. Krumova K; Friedland S; Cosa G J Am Chem Soc; 2012 Jun; 134(24):10102-13. PubMed ID: 22568598 [TBL] [Abstract][Full Text] [Related]
9. Free-radical repair by a novel perthiol: reversible hydrogen transfer and perthiyl radical formation. Everett SA; Folkes LK; Wardman P; Asmus KD Free Radic Res; 1994 Jun; 20(6):387-400. PubMed ID: 8081454 [TBL] [Abstract][Full Text] [Related]
10. The reaction of sulfenic acids with peroxyl radicals: insights into the radical-trapping antioxidant activity of plant-derived thiosulfinates. Amorati R; Lynett PT; Valgimigli L; Pratt DA Chemistry; 2012 May; 18(20):6370-9. PubMed ID: 22473818 [TBL] [Abstract][Full Text] [Related]
11. The reactivity of air-stable pyridine- and pyrimidine-containing diarylamine antioxidants. Hanthorn JJ; Amorati R; Valgimigli L; Pratt DA J Org Chem; 2012 Aug; 77(16):6895-907. PubMed ID: 22788527 [TBL] [Abstract][Full Text] [Related]
12. Phenoxazine: A Privileged Scaffold for Radical-Trapping Antioxidants. Farmer LA; Haidasz EA; Griesser M; Pratt DA J Org Chem; 2017 Oct; 82(19):10523-10536. PubMed ID: 28885854 [TBL] [Abstract][Full Text] [Related]
13. The effect of ring nitrogen atoms on the homolytic reactivity of phenolic compounds: understanding the radical-scavenging ability of 5-pyrimidinols. Valgimigli L; Brigati G; Pedulli GF; DiLabio GA; Mastragostino M; Arbizzani C; Pratt DA Chemistry; 2003 Oct; 9(20):4997-5010. PubMed ID: 14562318 [TBL] [Abstract][Full Text] [Related]
14. Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen! Valgimigli L; Pratt DA Acc Chem Res; 2015 Apr; 48(4):966-75. PubMed ID: 25839082 [TBL] [Abstract][Full Text] [Related]
15. The antioxidant and oxidant properties of hydropersulfides (RSSH) and polysulfide species. Switzer CH; Fukuto JM Redox Biol; 2022 Nov; 57():102486. PubMed ID: 36201912 [TBL] [Abstract][Full Text] [Related]
16. The chemistry of hydropersulfides (RSSH) as related to possible physiological functions. Fukuto JM Arch Biochem Biophys; 2023 Jul; 743():109659. PubMed ID: 37263465 [TBL] [Abstract][Full Text] [Related]
17. Biological chemistry of hydrogen sulfide and persulfides. Cuevasanta E; Möller MN; Alvarez B Arch Biochem Biophys; 2017 Mar; 617():9-25. PubMed ID: 27697462 [TBL] [Abstract][Full Text] [Related]
18. Activation of the S-H group in Fe(mu(2)-SH)Fe clusters: S-H bond strengths and free radical reactivity of the Fe(mu(2)-SH)Fe cluster. Franz JA; Lee SJ; Bowden TA; Alnajjar MS; Appel AM; Birnbaum JC; Bitterwolf TE; Dupuis M J Am Chem Soc; 2009 Oct; 131(42):15212-24. PubMed ID: 19795866 [TBL] [Abstract][Full Text] [Related]
19. Naphthalene diols: a new class of antioxidants intramolecular hydrogen bonding in catechols, naphthalene diols, and their aryloxyl radicals. Foti MC; Johnson ER; Vinqvist MR; Wright JS; Barclay LR; Ingold KU J Org Chem; 2002 Jul; 67(15):5190-6. PubMed ID: 12126405 [TBL] [Abstract][Full Text] [Related]
20. The reaction of hydrogen sulfide with disulfides: formation of a stable trisulfide and implications for biological systems. Bianco CL; Akaike T; Ida T; Nagy P; Bogdandi V; Toscano JP; Kumagai Y; Henderson CF; Goddu RN; Lin J; Fukuto JM Br J Pharmacol; 2019 Feb; 176(4):671-683. PubMed ID: 29809282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]