These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28420232)

  • 1. Gas-Phase Carboxylic Acids in a University Classroom: Abundance, Variability, and Sources.
    Liu S; Thompson SL; Stark H; Ziemann PJ; Jimenez JL
    Environ Sci Technol; 2017 May; 51(10):5454-5463. PubMed ID: 28420232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sources of organic acids in indoor air: a field study.
    Zhang J; Wilson WE; Lioy PJ
    J Expo Anal Environ Epidemiol; 1994; 4(1):25-47. PubMed ID: 7894267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of surface ozone interactions on indoor air chemistry: A modeling study.
    Kruza M; Lewis AC; Morrison GC; Carslaw N
    Indoor Air; 2017 Sep; 27(5):1001-1011. PubMed ID: 28303599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indoor acids and bases.
    Nazaroff WW; Weschler CJ
    Indoor Air; 2020 Jul; 30(4):559-644. PubMed ID: 32233033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms.
    Mi YH; Norbäck D; Tao J; Mi YL; Ferm M
    Indoor Air; 2006 Dec; 16(6):454-64. PubMed ID: 17100666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor ozone/human chemistry and ventilation strategies.
    Salvador CM; Bekö G; Weschler CJ; Morrison G; Le Breton M; Hallquist M; Ekberg L; Langer S
    Indoor Air; 2019 Nov; 29(6):913-925. PubMed ID: 31420890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center.
    Finewax Z; Pagonis D; Claflin MS; Handschy AV; Brown WL; Jenks O; Nault BA; Day DA; Lerner BM; Jimenez JL; Ziemann PJ; de Gouw JA
    Indoor Air; 2021 Sep; 31(5):1323-1339. PubMed ID: 33337567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residential water-soluble organic gases: chemical characterization of a substantial contributor to indoor exposures.
    Duncan SM; Sexton K; Collins L; Turpin BJ
    Environ Sci Process Impacts; 2019 Aug; 21(8):1364-1373. PubMed ID: 31157809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of human-related sources to indoor volatile organic compounds in a university classroom.
    Liu S; Li R; Wild RJ; Warneke C; de Gouw JA; Brown SS; Miller SL; Luongo JC; Jimenez JL; Ziemann PJ
    Indoor Air; 2016 Dec; 26(6):925-938. PubMed ID: 26610063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do breath and skin emissions impact indoor air chemistry?
    Kruza M; Carslaw N
    Indoor Air; 2019 May; 29(3):369-379. PubMed ID: 30663813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical reactions among indoor pollutants: what we've learned in the new millennium.
    Weschler CJ
    Indoor Air; 2004; 14 Suppl 7():184-94. PubMed ID: 15330786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Residential Water-Soluble Organic Gases: Insights into Sources and Sinks.
    Duncan SM; Tomaz S; Morrison G; Webb M; Atkin J; Surratt JD; Turpin BJ
    Environ Sci Technol; 2019 Feb; 53(4):1812-1821. PubMed ID: 30633495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of outdoor air and indoor human activity on mass concentrations of PM(10), PM(2.5), and PM(1) in a classroom.
    Branis M; Rezácová P; Domasová M
    Environ Res; 2005 Oct; 99(2):143-9. PubMed ID: 16194663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outdoor ozone and building-related symptoms in the BASE study.
    Apte MG; Buchanan IS; Mendell MJ
    Indoor Air; 2008 Apr; 18(2):156-70. PubMed ID: 18333994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indoor air distribution of nitrogen dioxide and ozone in urban hospitals.
    Chen HW; Chuang CY; Lin HT
    Bull Environ Contam Toxicol; 2009 Aug; 83(2):147-50. PubMed ID: 19198749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile Organic Compound Emissions from Humans Indoors.
    Tang X; Misztal PK; Nazaroff WW; Goldstein AH
    Environ Sci Technol; 2016 Dec; 50(23):12686-12694. PubMed ID: 27934268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Time-Dependent Concentrations of Primary and Secondary Reaction Products of Ozone with Squalene in a University Classroom.
    Xiong J; He Z; Tang X; Misztal PK; Goldstein AH
    Environ Sci Technol; 2019 Jul; 53(14):8262-8270. PubMed ID: 31260270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafine particle concentrations and exposures in seven residences in northern California.
    Bhangar S; Mullen NA; Hering SV; Kreisberg NM; Nazaroff WW
    Indoor Air; 2011 Apr; 21(2):132-44. PubMed ID: 21029183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources of indoor and outdoor PM2.5 concentrations in primary schools.
    Amato F; Rivas I; Viana M; Moreno T; Bouso L; Reche C; Àlvarez-Pedrerol M; Alastuey A; Sunyer J; Querol X
    Sci Total Environ; 2014 Aug; 490():757-65. PubMed ID: 24907610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.