BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28420951)

  • 1. Shared Neural Mechanisms for the Prediction of Own and Partner Musical Sequences after Short-term Piano Duet Training.
    Lappe C; Bodeck S; Lappe M; Pantev C
    Front Neurosci; 2017; 11():165. PubMed ID: 28420951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.
    Lappe C; Steinsträter O; Pantev C
    Front Hum Neurosci; 2013; 7():260. PubMed ID: 23759929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical plasticity induced by short-term multimodal musical rhythm training.
    Lappe C; Trainor LJ; Herholz SC; Pantev C
    PLoS One; 2011; 6(6):e21493. PubMed ID: 21747907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.
    Lappe C; Lappe M; Pantev C
    Neuroimage; 2016 Jan; 124(Pt A):898-905. PubMed ID: 26436712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory-somatosensory integration and cortical plasticity in musical training.
    Pantev C; Lappe C; Herholz SC; Trainor L
    Ann N Y Acad Sci; 2009 Jul; 1169():143-50. PubMed ID: 19673770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-band oscillations during passive listening to metronome sounds reflect improved timing representation after short-term musical training in healthy older adults.
    Fujioka T; Ross B
    Eur J Neurosci; 2017 Oct; 46(8):2339-2354. PubMed ID: 28887898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musical Role Asymmetries in Piano Duet Performance Influence Alpha-Band Neural Oscillation and Behavioral Synchronization.
    Washburn A; Román I; Huberth M; Gang N; Dauer T; Reid W; Nanou C; Wright M; Fujioka T
    Front Neurosci; 2019; 13():1088. PubMed ID: 31680824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortico-cerebellar audio-motor regions coordinate self and other in musical joint action.
    Kohler N; Novembre G; Gugnowska K; Keller PE; Villringer A; Sammler D
    Cereb Cortex; 2023 Mar; 33(6):2804-2822. PubMed ID: 35771593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring individual and joint action outcomes in duet music performance.
    Loehr JD; Kourtis D; Vesper C; Sebanz N; Knoblich G
    J Cogn Neurosci; 2013 Jul; 25(7):1049-61. PubMed ID: 23489144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds.
    Kliuchko M; Brattico E; Gold BP; Tervaniemi M; Bogert B; Toiviainen P; Vuust P
    PLoS One; 2019; 14(5):e0216499. PubMed ID: 31051008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical plasticity induced by short-term unimodal and multimodal musical training.
    Lappe C; Herholz SC; Trainor LJ; Pantev C
    J Neurosci; 2008 Sep; 28(39):9632-9. PubMed ID: 18815249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musical training increases functional connectivity, but does not enhance mu suppression.
    Wu CC; Hamm JP; Lim VK; Kirk IJ
    Neuropsychologia; 2017 Sep; 104():223-233. PubMed ID: 28864245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the effects of musical training on functional brain development with a novel Melodic MMN paradigm.
    Putkinen V; Tervaniemi M; Saarikivi K; de Vent N; Huotilainen M
    Neurobiol Learn Mem; 2014 Apr; 110():8-15. PubMed ID: 24462719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability.
    Vuust P; Brattico E; Glerean E; Seppänen M; Pakarinen S; Tervaniemi M; Näätänen R
    Cortex; 2011 Oct; 47(9):1091-8. PubMed ID: 21621766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation between melodic and rhythmic processing during piano performance from musical scores.
    Bengtsson SL; Ullén F
    Neuroimage; 2006 Mar; 30(1):272-84. PubMed ID: 16246591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive priming in sung and instrumental music: activation of inferior frontal cortex.
    Tillmann B; Koelsch S; Escoffier N; Bigand E; Lalitte P; Friederici AD; von Cramon DY
    Neuroimage; 2006 Jul; 31(4):1771-82. PubMed ID: 16624581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing expectancy violations during music performance and perception: an ERP study.
    Maidhof C; Vavatzanidis N; Prinz W; Rieger M; Koelsch S
    J Cogn Neurosci; 2010 Oct; 22(10):2401-13. PubMed ID: 19702473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musicians at the Cocktail Party: Neural Substrates of Musical Training During Selective Listening in Multispeaker Situations.
    Puschmann S; Baillet S; Zatorre RJ
    Cereb Cortex; 2019 Jul; 29(8):3253-3265. PubMed ID: 30137239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm.
    Vuust P; Liikala L; Näätänen R; Brattico P; Brattico E
    Clin Neurophysiol; 2016 Apr; 127(4):2065-77. PubMed ID: 26818879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.