These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28421214)

  • 21. [Kinetics of NAD-dependent formate dehydrogenase from the methanol-utilizing yeast Candida methylica].
    Zaks AM; Avilova TV; Egorova OA; Popov VO; Egorov AM
    Biokhimiia; 1982 Apr; 47(4):546-51. PubMed ID: 7082688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the formate dehydrogenase gene, FDH1, in the methylotrophic yeast Candida boidinii and growth characteristics of an FDH1-disrupted strain on methanol, methylamine, and choline.
    Sakai Y; Murdanoto AP; Konishi T; Iwamatsu A; Kato N
    J Bacteriol; 1997 Jul; 179(14):4480-5. PubMed ID: 9226256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of liposome-coupled NADH and evaluation of its affinity toward formate dehydrogenase based on deactivation kinetics of the enzyme.
    Yoshimoto M; Kunihiro N; Tsubomura N; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Sep; 109():40-4. PubMed ID: 23603041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3 -) to formate.
    Aslan AS; Valjakka J; Ruupunen J; Yildirim D; Turner NJ; Turunen O; Binay B
    Protein Eng Des Sel; 2017 Jan; 30(1):47-55. PubMed ID: 27887026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directed evolution of formate dehydrogenase from Candida boidinii for improved stability during entrapment in polyacrylamide.
    Ansorge-Schumacher MB; Slusarczyk H; Schümers J; Hirtz D
    FEBS J; 2006 Sep; 273(17):3938-45. PubMed ID: 16879615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+.
    Andreadeli A; Platis D; Tishkov V; Popov V; Labrou NE
    FEBS J; 2008 Aug; 275(15):3859-69. PubMed ID: 18616465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of pH on kinetic parameters of NAD+-dependent formate dehydrogenase.
    Mesentsev AV; Lamzin VS; Tishkov VI; Ustinnikova TB; Popov VO
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):475-80. PubMed ID: 9020883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.
    Jiang W; Lin P; Yang R; Fang B
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8425-37. PubMed ID: 27198726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide.
    Miller M; Robinson WE; Oliveira AR; Heidary N; Kornienko N; Warnan J; Pereira IAC; Reisner E
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4601-4605. PubMed ID: 30724432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional effects of active site mutations in NAD+-dependent formate dehydrogenases on transformation of hydrogen carbonate to formate.
    Pala U; Yelmazer B; Çorbacioglu M; Ruupunen J; Valjakka J; Turunen O; Binay B
    Protein Eng Des Sel; 2018 Sep; 31(9):327-335. PubMed ID: 30321426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.
    Abdellaoui S; Hickey DP; Stephens AR; Minteer SD
    Chem Commun (Camb); 2015 Oct; 51(76):14330-3. PubMed ID: 26271633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the Role of the Conserved Arg174 in Formate Dehydrogenase by Chemical Modification and Site-Directed Mutagenesis.
    Alqarni MH; Foudah AI; Muharram MM; Budurian H; Labrou NE
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33668802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interaction of Candida boidinii formate dehydrogenase with a new family of chimeric biomimetic dye-ligands.
    Labrou NE; Clonis YD
    Arch Biochem Biophys; 1995 Jan; 316(1):169-78. PubMed ID: 7840613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the purification of NAD+-dependent formate dehydrogenase from Candida methylica.
    Ordu EB; Karagüler NG
    Prep Biochem Biotechnol; 2007; 37(4):333-41. PubMed ID: 17849288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon.
    Hernández-Ibáñez N; Gomis-Berenguer A; Montiel V; Ania CO; Iniesta J
    Chemosphere; 2022 Mar; 291(Pt 3):133117. PubMed ID: 34861253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molybdenum and tungsten-dependent formate dehydrogenases.
    Maia LB; Moura JJ; Moura I
    J Biol Inorg Chem; 2015 Mar; 20(2):287-309. PubMed ID: 25476858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft.
    Shabalin IG; Filippova EV; Polyakov KM; Sadykhov EG; Safonova TN; Tikhonova TV; Tishkov VI; Popov VO
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1315-25. PubMed ID: 19966418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.