These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28421214)
61. High resolution structures of holo and apo formate dehydrogenase. Lamzin VS; Dauter Z; Popov VO; Harutyunyan EH; Wilson KS J Mol Biol; 1994 Feb; 236(3):759-85. PubMed ID: 8114093 [TBL] [Abstract][Full Text] [Related]
62. Formate dehydrogenase activity in methanol-utilizing yeasts. Illeová V; Certík M; Stefuca V; Báles V Microbios; 1993; 76(306):29-33. PubMed ID: 8264430 [TBL] [Abstract][Full Text] [Related]
63. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity. Gomes JF; Gasparotto LH; Tremiliosi-Filho G Phys Chem Chem Phys; 2013 Jul; 15(25):10339-49. PubMed ID: 23666524 [TBL] [Abstract][Full Text] [Related]
64. Photoreduction of CO Sokol KP; Robinson WE; Oliveira AR; Warnan J; Nowaczyk MM; Ruff A; Pereira IAC; Reisner E J Am Chem Soc; 2018 Dec; 140(48):16418-16422. PubMed ID: 30452863 [TBL] [Abstract][Full Text] [Related]
65. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate. Liu A; Feng R; Liang B Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330 [TBL] [Abstract][Full Text] [Related]
66. [Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli]. Sun Y; Zhang R; Xu Y Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1629-33. PubMed ID: 19271538 [TBL] [Abstract][Full Text] [Related]
67. Osmolyte effect on enzymatic stability and reaction equilibrium of formate dehydrogenase. Gajardo-Parra NF; Akrofi-Mantey H; Ascani M; Cea-Klapp E; Garrido JM; Sadowski G; Held C Phys Chem Chem Phys; 2022 Nov; 24(45):27930-27939. PubMed ID: 36373217 [TBL] [Abstract][Full Text] [Related]
68. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions. Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466 [TBL] [Abstract][Full Text] [Related]
69. Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases. Kim YH; Campbell E; Yu J; Minteer SD; Banta S Angew Chem Int Ed Engl; 2013 Jan; 52(5):1437-40. PubMed ID: 23239008 [No Abstract] [Full Text] [Related]
70. Biotransformation of D-methionine into L-methionine in the cascade of four enzymes. Findrik Z; Vasić-Racki D Biotechnol Bioeng; 2007 Dec; 98(5):956-67. PubMed ID: 17534960 [TBL] [Abstract][Full Text] [Related]
71. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874 [TBL] [Abstract][Full Text] [Related]
72. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase. Lu Y; Zhao H; Zhang C; Lai Q; Wu X; Xing XH Appl Microbiol Biotechnol; 2010 Mar; 86(1):255-62. PubMed ID: 19830418 [TBL] [Abstract][Full Text] [Related]
73. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from Harmer JR; Hakopian S; Niks D; Hille R; Bernhardt PV J Am Chem Soc; 2023 Nov; 145(47):25850-25863. PubMed ID: 37967365 [TBL] [Abstract][Full Text] [Related]
74. The Reversible Electrochemical Interconversion of Formate and CO Kalimuthu P; Hakopian S; Niks D; Hille R; Bernhardt PV J Phys Chem B; 2023 Oct; 127(39):8382-8392. PubMed ID: 37728992 [TBL] [Abstract][Full Text] [Related]
75. Conserved Amino Acid Residues that Affect Structural Stability of Candida boidinii Formate Dehydrogenase. Bulut H; Yuksel B; Gul M; Eren M; Karatas E; Kara N; Yilmazer B; Kocyigit A; Labrou NE; Binay B Appl Biochem Biotechnol; 2021 Feb; 193(2):363-376. PubMed ID: 32974869 [TBL] [Abstract][Full Text] [Related]
76. Application of an electrochemical NAD+ recycling system involving a string-like carbon fiber to an enzyme reactor. Maeda H; Seki T; Iwamura K; Anai Y Biosci Biotechnol Biochem; 2010; 74(9):1931-5. PubMed ID: 20834161 [TBL] [Abstract][Full Text] [Related]
77. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. Sánchez AM; Bennett GN; San KY J Biotechnol; 2005 Jun; 117(4):395-405. PubMed ID: 15925720 [TBL] [Abstract][Full Text] [Related]
78. Reaction mechanism of formate dehydrogenase studied by computational methods. Dong G; Ryde U J Biol Inorg Chem; 2018 Dec; 23(8):1243-1254. PubMed ID: 30173398 [TBL] [Abstract][Full Text] [Related]
79. Leveraging liquid-liquid phase separation and volume modulation to regulate the enzymatic activity of formate dehydrogenase. Ostermeier L; Ascani M; Gajardo-Parra N; Sadowski G; Held C; Winter R Biophys Chem; 2024 Jan; 304():107128. PubMed ID: 37922819 [TBL] [Abstract][Full Text] [Related]
80. [Two ways of formate oxidation in methylotrophic bacteria]. Rodionov IuV; Zakharova EV Biokhimiia; 1980 May; 45(5):854-63. PubMed ID: 6246983 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]