These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28421216)

  • 1. Kinetics of crystalline nuclei growth in glassy systems.
    Mokshin AV; Galimzyanov BN
    Phys Chem Chem Phys; 2017 May; 19(18):11340-11353. PubMed ID: 28421216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling law for crystal nucleation time in glasses.
    Mokshin AV; Galimzyanov BN
    J Chem Phys; 2015 Mar; 142(10):104502. PubMed ID: 25770546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Ideal glassformers" vs "ideal glasses": studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry.
    Kapko V; Zhao Z; Matyushov DV; Austen Angell C
    J Chem Phys; 2013 Mar; 138(12):12A549. PubMed ID: 23556800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for analyzing the non-stationary nucleation and overall transition kinetics: a case of water.
    Mokshin AV; Galimzyanov BN
    J Chem Phys; 2014 Jan; 140(2):024104. PubMed ID: 24437862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment.
    Mokshin AV; Galimzyanov BN
    J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride.
    Leyssale JM; Delhommelle J; Millot C
    J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal nucleation and cluster-growth kinetics in a model glass under shear.
    Mokshin AV; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021505. PubMed ID: 20866816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct evaluation of attachment and detachment rate factors of atoms in crystallizing supercooled liquids.
    Yarullin DT; Galimzyanov BN; Mokshin AV
    J Chem Phys; 2020 Jun; 152(22):224501. PubMed ID: 32534538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid.
    Desgranges C; Delhommelle J
    Soft Matter; 2018 Jul; 14(29):5977-5985. PubMed ID: 29911716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of Crystal Nuclei of Poly (butylene isophthalate) Formed Near the Glass Transition Temperature.
    Quattrosoldi S; Lotti N; Soccio M; Schick C; Androsch R
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32403402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-controlled and diffusionless crystal growth in liquid o-terphenyl near its glass transition temperature.
    Xi H; Sun Y; Yu L
    J Chem Phys; 2009 Mar; 130(9):094508. PubMed ID: 19275410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics methodology to investigate steady-state heterogeneous crystal growth.
    Vatamanu J; Kusalik PG
    J Chem Phys; 2007 Mar; 126(12):124703. PubMed ID: 17411148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous nucleation and growth of melt in copper.
    Zheng L; An Q; Xie Y; Sun Z; Luo SN
    J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension.
    Nicholson DA; Rutledge GC
    J Chem Phys; 2016 Dec; 145(24):244903. PubMed ID: 28049327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic processes in a silicate liquid from above melting to below the glass transition.
    Nascimento ML; Fokin VM; Zanotto ED; Abyzov AS
    J Chem Phys; 2011 Nov; 135(19):194703. PubMed ID: 22112093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of nucleation using mean first-passage time data from molecular dynamics simulation.
    Nicholson DA; Rutledge GC
    J Chem Phys; 2016 Apr; 144(13):134105. PubMed ID: 27059560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can amorphous nuclei grow crystalline clathrates? The size and crystallinity of critical clathrate nuclei.
    Jacobson LC; Molinero V
    J Am Chem Soc; 2011 Apr; 133(16):6458-63. PubMed ID: 21466207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.