These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 28421352)
21. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers. Tan BMJ; Chan LW; Heng PWS Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144 [TBL] [Abstract][Full Text] [Related]
22. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Lucas P; Anderson K; Staniforth JN Pharm Res; 1998 Apr; 15(4):562-9. PubMed ID: 9587952 [TBL] [Abstract][Full Text] [Related]
23. Spray-Congealing and Wet-Sieving as Alternative Processes for Engineering of Inhalation Carrier Particles: Comparison of Surface Properties, Blending and In Vitro Performance. Pinto JT; Zellnitz S; Guidi T; Schiaretti F; Schroettner H; Paudel A Pharm Res; 2021 Jun; 38(6):1107-1123. PubMed ID: 34114162 [TBL] [Abstract][Full Text] [Related]
24. In vitro evaluation of powders for inhalation: the effect of drug concentration on particle detachment. Le VN; Hoang Thi TH; Robins E; Flament MP Int J Pharm; 2012 Mar; 424(1-2):44-9. PubMed ID: 22207163 [TBL] [Abstract][Full Text] [Related]
25. Development of a Rational Design Space for Optimizing Mixing Conditions for Formation of Adhesive Mixtures for Dry-Powder Inhaler Formulations. Sarkar S; Minatovicz B; Thalberg K; Chaudhuri B J Pharm Sci; 2017 Jan; 106(1):129-139. PubMed ID: 27546350 [TBL] [Abstract][Full Text] [Related]
26. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Hebbink GA; Jaspers M; Peters HJW; Dickhoff BHJ Adv Drug Deliv Rev; 2022 Oct; 189():114527. PubMed ID: 36070848 [TBL] [Abstract][Full Text] [Related]
27. Surface Modification of lactose carrier particles using a fluid bed coater to improve fine particle fraction for dry powder inhalers. Gong QQ; Tay JYS; Veronica N; Xu J; Heng PWS; Zhang YP; Liew CV Pharm Dev Technol; 2023 Feb; 28(2):164-175. PubMed ID: 36683577 [TBL] [Abstract][Full Text] [Related]
28. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations. Kinnunen H; Hebbink G; Peters H; Shur J; Price R AAPS PharmSciTech; 2014 Aug; 15(4):898-909. PubMed ID: 24756910 [TBL] [Abstract][Full Text] [Related]
29. [Effect of separation characteristics between salbutamol sulfate (SS) particles and model carrier excipients on dry powder for inhalation]. Iida K; Leuenberger H; Fueg LM; Müller-Walz R; Danjo K Yakugaku Zasshi; 1999 Oct; 119(10):752-62. PubMed ID: 10518459 [TBL] [Abstract][Full Text] [Related]
30. The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations. Jones MD; Price R Pharm Res; 2006 Aug; 23(8):1665-74. PubMed ID: 16845584 [TBL] [Abstract][Full Text] [Related]
31. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices. Ooi J; Gill C; Young PM; Traini D Curr Drug Deliv; 2015; 12(1):40-6. PubMed ID: 25146438 [TBL] [Abstract][Full Text] [Related]
32. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance. Cordts E; Steckel H Eur J Pharm Biopharm; 2012 Oct; 82(2):417-23. PubMed ID: 22902789 [TBL] [Abstract][Full Text] [Related]
33. Polymer coating of carrier excipients modify aerosol performance of adhered drugs used in dry powder inhalation therapy. Traini D; Scalia S; Adi H; Marangoni E; Young PM Int J Pharm; 2012 Nov; 438(1-2):150-9. PubMed ID: 22964399 [TBL] [Abstract][Full Text] [Related]
34. The influence of high shear mixing on ternary dry powder inhaler formulations. Hertel M; Schwarz E; Kobler M; Hauptstein S; Steckel H; Scherließ R Int J Pharm; 2017 Dec; 534(1-2):242-250. PubMed ID: 29051120 [TBL] [Abstract][Full Text] [Related]
35. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations. Hertel M; Schwarz E; Kobler M; Hauptstein S; Steckel H; Scherließ R Int J Pharm; 2018 Jan; 535(1-2):59-67. PubMed ID: 29100914 [TBL] [Abstract][Full Text] [Related]
36. Dry powder inhalers: study of the parameters influencing adhesion and dispersion of fluticasone propionate. Le VN; Hoang Thi TH; Robins E; Flament MP AAPS PharmSciTech; 2012 Jun; 13(2):477-84. PubMed ID: 22399285 [TBL] [Abstract][Full Text] [Related]
37. Carrier-based dry powder inhalation: Impact of carrier modification on capsule filling processability and in vitro aerodynamic performance. Faulhammer E; Wahl V; Zellnitz S; Khinast JG; Paudel A Int J Pharm; 2015 Aug; 491(1-2):231-42. PubMed ID: 26136200 [TBL] [Abstract][Full Text] [Related]
38. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation. Faulhammer E; Zellnitz S; Wutscher T; Stranzinger S; Zimmer A; Paudel A Int J Pharm; 2018 Jan; 536(1):326-335. PubMed ID: 29217472 [TBL] [Abstract][Full Text] [Related]
39. The relationship between drug concentration, mixing time, blending order and ternary dry powder inhalation performance. Jones MD; Santo JG; Yakub B; Dennison M; Master H; Buckton G Int J Pharm; 2010 May; 391(1-2):137-47. PubMed ID: 20211715 [TBL] [Abstract][Full Text] [Related]
40. [Effect of mixing of fine carrier particles on dry powder inhalation property of salbutamol sulfate (SS)]. Iida K; Leuenberger H; Fueg LM; Müller-Walz R; Okamoto H; Danjo K Yakugaku Zasshi; 2000 Jan; 120(1):113-9. PubMed ID: 10655787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]