These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28421437)

  • 21. Transcriptome Profile Alterations with Carbon Nanotubes, Quantum Dots, and Silver Nanoparticles: A Review.
    Horstmann C; Davenport V; Zhang M; Peters A; Kim K
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioluminescent immunosorbent for rapid immunoassays.
    Térouanne B; Carrié ML; Nicolas JC; Crastes de Paulet A
    Anal Biochem; 1986 Apr; 154(1):118-25. PubMed ID: 3518535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria.
    Simon-Deckers A; Loo S; Mayne-L'hermite M; Herlin-Boime N; Menguy N; Reynaud C; Gouget B; Carrière M
    Environ Sci Technol; 2009 Nov; 43(21):8423-9. PubMed ID: 19924979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.
    Schrand AM; Powell T; Robertson T; Hussain SM
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1053-9. PubMed ID: 26353612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach to the toxicity testing of carbon-based nanomaterials--the clonogenic assay.
    Herzog E; Casey A; Lyng FM; Chambers G; Byrne HJ; Davoren M
    Toxicol Lett; 2007 Nov; 174(1-3):49-60. PubMed ID: 17920791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna.
    Kim KT; Klaine SJ; Lin S; Ke PC; Kim SD
    Environ Toxicol Chem; 2010 Jan; 29(1):122-6. PubMed ID: 20821426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-term splenic impact of single-strand DNA functionalized multi-walled carbon nanotubes intraperitoneally injected in rats.
    Clichici S; Biris AR; Catoi C; Filip A; Tabaran F
    J Appl Toxicol; 2014 Apr; 34(4):332-44. PubMed ID: 23677818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive DNA biosensor improved by Luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode.
    Niu S; Han B; Cao W; Zhang S
    Anal Chim Acta; 2009 Sep; 651(1):42-7. PubMed ID: 19733733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors.
    Yao Y; Zhang T; Tang M
    Environ Pollut; 2022 Aug; 306():119270. PubMed ID: 35398402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Affinity purification of bacterial luciferase and NAD(P)H:FMN oxidoreductases by FMN-sepharose for analytical applications.
    Lavi JT; Raunio RP; Stahlberg TH
    J Biolumin Chemilumin; 1990; 5(3):187-92. PubMed ID: 2220416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioluminescent monitoring of detoxification processes: activity of humic substances in quinone solutions.
    Fedorova E; Kudryasheva N; Kuznetsov A; Mogil'naya O; Stom D
    J Photochem Photobiol B; 2007 Sep; 88(2-3):131-6. PubMed ID: 17716903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo study of hazardous effects of Ag nanoparticles and Arginine-treated multi walled carbon nanotubes on blood cells: application in hemodialysis membranes.
    Zare-Zardini H; Amiri A; Shanbedi M; Taheri-Kafrani A; Kazi SN; Chew BT; Razmjou A
    J Biomed Mater Res A; 2015 Sep; 103(9):2959-65. PubMed ID: 25690431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.
    Karlsson HL; Cronholm P; Gustafsson J; Möller L
    Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of bioluminescent enzyme bioassay for the analysis of human saliva: Advantages and disadvantages.
    Kolenchukova OA; Dedora AO; Stepanova LV; Kravchuk VU; Kratasyuk VA
    Luminescence; 2024 May; 39(5):e4776. PubMed ID: 38769690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs).
    Sharma M; Nikota J; Halappanavar S; Castranova V; Rothen-Rutishauser B; Clippinger AJ
    Arch Toxicol; 2016 Jul; 90(7):1605-22. PubMed ID: 27215431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semiquantitative bioluminescent assay of glutathione.
    Romero FJ; Mueller-Klieser W
    J Biolumin Chemilumin; 1998; 13(5):263-6. PubMed ID: 9839189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-Enzymes-Mediated Bioluminescent Sensor for Quantitative and Ultrasensitive Point-of-Care Testing.
    Chen Y; Xianyu Y; Wu J; Dong M; Zheng W; Sun J; Jiang X
    Anal Chem; 2017 May; 89(10):5422-5427. PubMed ID: 28421743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.
    Yan L; Zhao F; Li S; Hu Z; Zhao Y
    Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gelatin and Starch: What Better Stabilizes the Enzyme Activity?
    Esimbekova EN; Govorun AE; Lonshakova-Mukina VI; Kratasyuk VA
    Dokl Biol Sci; 2020 Mar; 491(1):43-46. PubMed ID: 32483706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.