These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28421611)

  • 41. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.
    James JR; Pavlicek W; Hanson JA; Boltz TF; Patel BK
    AJR Am J Roentgenol; 2017 Feb; 208(2):362-372. PubMed ID: 28112559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Niobium/molybdenum K-edge filtration in mammography: contrast and dose evaluation.
    Calicchia A; Gambaccini M; Indovina PL; Mazzei F; Pugliani L
    Phys Med Biol; 1996 Sep; 41(9):1717-26. PubMed ID: 8884908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.
    Saito M
    Med Phys; 2007 Nov; 34(11):4236-46. PubMed ID: 18072488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application.
    Shikhaliev PM; Fritz SG
    Phys Med Biol; 2011 Apr; 56(7):1905-30. PubMed ID: 21364268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detectability comparison between a high energy x-ray phase sensitive and mammography systems in imaging phantoms with varying glandular-adipose ratios.
    Ghani MU; Wong MD; Wu D; Zheng B; Fajardo LL; Yan A; Fuh J; Wu X; Liu H
    Phys Med Biol; 2017 May; 62(9):3523-3538. PubMed ID: 28379851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accurate estimation of compressed breast thickness in mammography.
    Mawdsley GE; Tyson AH; Peressotti CL; Jong RA; Yaffe MJ
    Med Phys; 2009 Feb; 36(2):577-86. PubMed ID: 19291997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Breast tissue characterization with photon-counting spectral CT imaging: a postmortem breast study.
    Ding H; Klopfer MJ; Ducote JL; Masaki F; Molloi S
    Radiology; 2014 Sep; 272(3):731-8. PubMed ID: 24814180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Breast compression parameters and mammographic density in the Norwegian Breast Cancer Screening Programme.
    Moshina N; Roman M; Waade GG; Sebuødegård S; Ursin G; Hofvind S
    Eur Radiol; 2018 Apr; 28(4):1662-1672. PubMed ID: 29098437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of breast density on the missed lesion rate in screening digital mammography determined using an adjustable-density breast phantom tailored to Japanese women.
    Yamamuro M; Asai Y; Hashimoto N; Yasuda N; Ozaki Y; Ishii K; Lee Y
    PLoS One; 2021; 16(1):e0245060. PubMed ID: 33411847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of mammography radiation dose values obtained from direct incident air kerma measurements with values from measured X-ray spectral data.
    Assiamah M; Nam TL; Keddy RJ
    Appl Radiat Isot; 2005 Apr; 62(4):551-60. PubMed ID: 15701409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Do women with dense breasts have higher radiation dose during screening mammography?
    Nguyen JV; Williams MB; Patrie JT; Harvey JA
    Breast J; 2018 Jan; 24(1):35-40. PubMed ID: 28590576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contrast-Enhanced Spectral Mammography in Women With Intermediate Breast Cancer Risk and Dense Breasts.
    Sorin V; Yagil Y; Yosepovich A; Shalmon A; Gotlieb M; Neiman OH; Sklair-Levy M
    AJR Am J Roentgenol; 2018 Nov; 211(5):W267-W274. PubMed ID: 30240292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation and comparison of a CdTe based photon counting detector with an energy integrating detector for X-ray phase sensitive imaging of breast cancer.
    Ghani MU; Omoumi FH; Wu X; Fajardo LL; Zheng B; Liu H
    J Xray Sci Technol; 2022; 30(2):207-219. PubMed ID: 34957945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of microcalcifications for insertion into phantoms used to evaluate x-ray breast imaging systems.
    Ghammraoui B; Zidan A; Alayoubi A; Zidan A; Glick SJ
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34375962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.
    Cho HM; Ding H; Barber WC; Iwanczyk JS; Molloi S
    Med Phys; 2015 Jul; 42(7):4401-10. PubMed ID: 26133636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel use of single X-ray absorptiometry for measuring breast density.
    Shepherd JA; Herve L; Landau J; Fan B; Kerlikowske K; Cummings SR
    Technol Cancer Res Treat; 2005 Apr; 4(2):173-82. PubMed ID: 15773786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dosimetric characterization of a dedicated breast computed tomography clinical prototype.
    Sechopoulos I; Feng SS; D'Orsi CJ
    Med Phys; 2010 Aug; 37(8):4110-20. PubMed ID: 20879571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating mean glandular dose using proprietary mammography phantoms.
    Hartley LD; Cobb BJ; Hutchinson DE
    Appl Radiat Isot; 1999 Jan; 50(1):205-13. PubMed ID: 10028638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microdosimetric analysis of radiation from a clinical mammography machine using realistic breast phantoms and a miniature proportional counter.
    Kliauga P; Onizuka Y; Magrin G
    Phys Med Biol; 1996 Nov; 41(11):2295-306. PubMed ID: 8938027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.