These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 28421760)
21. Photochemistry of the Light-Driven Sodium Pump Asido M; Wachtveitl J J Phys Chem B; 2023 May; 127(17):3766-3773. PubMed ID: 36919947 [TBL] [Abstract][Full Text] [Related]
22. Transient Near-UV Absorption of the Light-Driven Sodium Pump Asido M; Kar RK; Kriebel CN; Braun M; Glaubitz C; Schapiro I; Wachtveitl J J Phys Chem Lett; 2021 Jul; 12(27):6284-6291. PubMed ID: 34213348 [TBL] [Abstract][Full Text] [Related]
23. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Hontani Y; Inoue K; Kloz M; Kato Y; Kandori H; Kennis JT Phys Chem Chem Phys; 2016 Sep; 18(35):24729-36. PubMed ID: 27550793 [TBL] [Abstract][Full Text] [Related]
24. Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Suomivuori CM; Gamiz-Hernandez AP; Sundholm D; Kaila VRI Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7043-7048. PubMed ID: 28611220 [TBL] [Abstract][Full Text] [Related]
25. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Deng H; Huang L; Callender R; Ebrey T Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384 [TBL] [Abstract][Full Text] [Related]
26. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402 [TBL] [Abstract][Full Text] [Related]
27. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
28. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin. Pande C; Deng H; Rath P; Callender RH; Schwemer J Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084 [TBL] [Abstract][Full Text] [Related]
29. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. Inoue K; Koua FH; Kato Y; Abe-Yoshizumi R; Kandori H J Phys Chem B; 2014 Sep; 118(38):11190-9. PubMed ID: 25166488 [TBL] [Abstract][Full Text] [Related]
30. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2. Tomida S; Ito S; Inoue K; Kandori H Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):684-691. PubMed ID: 29852143 [TBL] [Abstract][Full Text] [Related]
31. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
32. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227. Imasheva ES; Shimono K; Balashov SP; Wang JM; Zadok U; Sheves M; Kamo N; Lanyi JK Biochemistry; 2005 Aug; 44(32):10828-38. PubMed ID: 16086585 [TBL] [Abstract][Full Text] [Related]
33. Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible. Dioumaev AK; Petrovskaya LE; Wang JM; Balashov SP; Dolgikh DA; Kirpichnikov MP; Lanyi JK J Phys Chem B; 2013 Jun; 117(24):7235-53. PubMed ID: 23718558 [TBL] [Abstract][Full Text] [Related]
34. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Kandori H; Inoue K; Tsunoda SP Chem Rev; 2018 Nov; 118(21):10646-10658. PubMed ID: 29513519 [TBL] [Abstract][Full Text] [Related]
35. Cis-Trans Reisomerization Precedes Reprotonation of the Retinal Chromophore in the Photocycle of Schizorhodopsin 4. Hayashi K; Mizuno M; Kandori H; Mizutani Y Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202203149. PubMed ID: 35749139 [TBL] [Abstract][Full Text] [Related]
36. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin. Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611 [TBL] [Abstract][Full Text] [Related]
37. Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump. Kato HE; Inoue K; Abe-Yoshizumi R; Kato Y; Ono H; Konno M; Hososhima S; Ishizuka T; Hoque MR; Kunitomo H; Ito J; Yoshizawa S; Yamashita K; Takemoto M; Nishizawa T; Taniguchi R; Kogure K; Maturana AD; Iino Y; Yawo H; Ishitani R; Kandori H; Nureki O Nature; 2015 May; 521(7550):48-53. PubMed ID: 25849775 [TBL] [Abstract][Full Text] [Related]
38. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae. Penzkofer A; Scheib U; Stehfest K; Hegemann P Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28981475 [TBL] [Abstract][Full Text] [Related]
39. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
40. Implications for the Light-Driven Chloride Ion Transport Mechanism of Nonlabens marinus Rhodopsin 3 by Its Photochemical Characteristics. Tsukamoto T; Yoshizawa S; Kikukawa T; Demura M; Sudo Y J Phys Chem B; 2017 Mar; 121(9):2027-2038. PubMed ID: 28194973 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]