These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28421987)

  • 1. A New Dispersive Liquid-Liquid Microextraction Method for Preconcentration and Determination of Aluminum, Iron, Copper, and Lead in Real Water Samples by HPLC.
    Alpdoğan G; Zor ŞD
    J AOAC Int; 2017 Sep; 100(5):1524-1530. PubMed ID: 28421987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.
    Citak D; Tuzen M
    J AOAC Int; 2013; 96(6):1435-9. PubMed ID: 24645526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.
    Anthemidis AN; Ioannou KI
    Talanta; 2009 Jun; 79(1):86-91. PubMed ID: 19376348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular-Based Ultrasonic-Assisted Dispersion Solidification Liquid-Liquid Microextraction of Copper and Cobalt Prior to Their Flame Atomic Absorption Spectrometry Determination.
    Shokrollahi A; Ebrahimi F
    J AOAC Int; 2017 Nov; 100(6):1861-1868. PubMed ID: 28807089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E; Zgoła-Grześkowiak A
    Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC-UV.
    Khodadoust S; Ghaedi M
    J Sep Sci; 2013 Jun; 36(11):1734-42. PubMed ID: 23625524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple, rapid, and sensitive determination of beta-blockers in environmental water using dispersive liquid-liquid microextraction followed by liquid chromatography with fluorescence detection.
    Parrilla Vázquez Mdel M; Parrilla Vázquez P; Martínez Galera M; Molina Sánchez L
    J Sep Sci; 2012 Sep; 35(17):2184-92. PubMed ID: 22887596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous spectrophotometric determination of Fe(III) and Al(III) using orthogonal signal correction-partial least squares calibration method after solidified floating organic drop microextraction.
    Rohani Moghadam M; Haji Shabani AM; Dadfarnia S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():929-34. PubMed ID: 25168229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.
    Alothman ZA; Habila M; Yilmaz E; Soylak M
    J AOAC Int; 2013; 96(6):1425-9. PubMed ID: 24645524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of copper as 1-(2-pyridylazo)-2-naphthol complex by the combination of dispersive liquid-liquid microextraction/flame atomic absorption spectrometry.
    Kandhro GA; Soylak M; Kazi TG; Yilmaz E
    J AOAC Int; 2014; 97(1):205-10. PubMed ID: 24672879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-Assisted Emulsification and Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorption Spectrometry.
    Bi Şgi N AT
    J AOAC Int; 2019 Sep; 102(5):1516-1522. PubMed ID: 31088596
    [No Abstract]   [Full Text] [Related]  

  • 13. Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid-liquid microextraction.
    Borzoei M; Zanjanchi MA; Sadeghi-Aliabadi H; Saghaie L
    Food Chem; 2018 Oct; 264():9-15. PubMed ID: 29853409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with UV-Vis Spectrophotometry.
    Nejad MG; Faraji H; Moghimi A
    Bull Environ Contam Toxicol; 2017 Apr; 98(4):546-555. PubMed ID: 28132077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for high preconcentration of ultra trace amounts of B₁, B₂, G₁ and G₂ aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up.
    Afzali D; Ghanbarian M; Mostafavi A; Shamspur T; Ghaseminezhad S
    J Chromatogr A; 2012 Jul; 1247():35-41. PubMed ID: 22673813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles.
    Majedi SM; Lee HK
    J Chromatogr A; 2017 Feb; 1486():86-95. PubMed ID: 27425764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhang Y; Lee HK
    J Chromatogr A; 2013 Jan; 1271(1):56-61. PubMed ID: 23237715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents.
    Yu H; Merib J; Anderson JL
    J Chromatogr A; 2016 Sep; 1463():11-9. PubMed ID: 27515554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of dispersive liquid-liquid microextraction for the simultaneous extraction, preconcentration, and derivatization of Hg2+ and CH3Hg+ for further determination by GC-MS.
    Soares BM; Pereira ER; Maciel JV; Vieira AA; Duarte FA
    J Sep Sci; 2013 Oct; 36(20):3411-8. PubMed ID: 23946243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.