These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28422151)

  • 41. Purification and properties of serine hydroxymethyltransferase from Sulfolobus solfataricus.
    Delle Fratte S; White RH; Maras B; Bossa F; Schirch V
    J Bacteriol; 1997 Dec; 179(23):7456-61. PubMed ID: 9393711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conformational transitions driven by pyridoxal-5'-phosphate uptake in the psychrophilic serine hydroxymethyltransferase from Psychromonas ingrahamii.
    Angelaccio S; Dworkowski F; Di Bello A; Milano T; Capitani G; Pascarella S
    Proteins; 2014 Oct; 82(10):2831-41. PubMed ID: 25044250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein.
    Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ
    Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The structure of serine hydroxymethyltransferase as modeled by homology and validated by site-directed mutagenesis.
    Pascarella S; Angelaccio S; Contestabile R; Delle Fratte S; Di Salvo M; Bossa F
    Protein Sci; 1998 Sep; 7(9):1976-82. PubMed ID: 9761478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Addition of a methyl group changes both the catalytic velocity and thermostability of the neutral protease from Bacillus stearothermophilus.
    Takagi M; Imanaka T
    FEBS Lett; 1989 Aug; 254(1-2):43-6. PubMed ID: 2673840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues.
    Vihinen M; Ollikka P; Niskanen J; Meyer P; Suominen I; Karp M; Holm L; Knowles J; Mäntsälä P
    J Biochem; 1990 Feb; 107(2):267-72. PubMed ID: 1694530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A differentially conserved residue (Ile42) of GH42 β-galactosidase from Geobacillus stearothermophilus BgaB is involved in both catalysis and thermostability.
    Dong YN; Chen HQ; Sun YH; Zhang H; Chen W
    J Dairy Sci; 2015 Apr; 98(4):2268-76. PubMed ID: 25682138
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The importance of an extra loop in the B-domain of an alpha-amylase from B. stearothermophilus US100.
    Khemakhem B; Ben Ali M; Aghajari N; Juy M; Haser R; Bejar S
    Biochem Biophys Res Commun; 2009 Jul; 385(1):78-83. PubMed ID: 19422796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Importance of the amino terminus in maintenance of oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase.
    Jagath JR; Sharma B; Bhaskar B; Datta A; Rao NA; Savithri HS
    Eur J Biochem; 1997 Jul; 247(1):372-9. PubMed ID: 9249049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges.
    Panja AS; Bandopadhyay B; Maiti S
    PLoS One; 2015; 10(7):e0131495. PubMed ID: 26177372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability.
    Fujiwara S; Kakihara H; Sakaguchi K; Imanaka T
    J Bacteriol; 1992 Nov; 174(22):7478-81. PubMed ID: 1429471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. D-glyceraldehyde-3-phosphate dehydrogenase. Complete amino-acid sequence of the enzyme from Bacillus stearothermophilus.
    Walker JE; Carne AF; Runswick MJ; Bridgen J; Harris JI
    Eur J Biochem; 1980 Jul; 108(2):549-65. PubMed ID: 7408868
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Leucine Dehydrogenase: Structure and Thermostability.
    Yamaguchi H; Kamegawa A; Nakata K; Kashiwagi T; Fujiyoshi Y; Tani K; Mizukoshi T
    Subcell Biochem; 2021; 96():355-372. PubMed ID: 33252736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site-directed mutagenesis.
    Kawamura S; Tanaka I; Yamasaki N; Kimura M
    J Biochem; 1997 Mar; 121(3):448-55. PubMed ID: 9133613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An essential residue in the flexible peptide linking the two idiosynchratic domains of bacterial tyrosyl-tRNA synthetases.
    Gaillard C; Bedouelle H
    Biochemistry; 2001 Jun; 40(24):7192-9. PubMed ID: 11401566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus.
    Schläpfer BS; Zuber H
    Gene; 1992 Dec; 122(1):53-62. PubMed ID: 1452037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving the thermostability of the neutral protease of Bacillus stearothermophilus by replacing a buried asparagine by leucine.
    Eijsink VG; van der Zee JR; van den Burg B; Vriend G; Venema G
    FEBS Lett; 1991 Apr; 282(1):13-6. PubMed ID: 2026247
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural study of carboxylesterase from hyperthermophilic bacteria Geobacillus stearothermophilus by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2010 Jun; 28(8):820-7. PubMed ID: 20347362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complete amino acid sequence of copper-zinc superoxide dismutase from Drosophila melanogaster.
    Lee YM; Friedman DJ; Ayala FJ
    Arch Biochem Biophys; 1985 Sep; 241(2):577-89. PubMed ID: 3929689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deamidation of asparagine residues in a recombinant serine hydroxymethyltransferase.
    di Salvo ML; Delle Fratte S; Maras B; Bossa F; Wright HT; Schirch V
    Arch Biochem Biophys; 1999 Dec; 372(2):271-9. PubMed ID: 10600164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.