BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28422154)

  • 1. Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs.
    Ballester M; Ramayo-Caldas Y; Revilla M; Corominas J; Castelló A; Estellé J; Fernández AI; Folch JM
    Sci Rep; 2017 Apr; 7():46539. PubMed ID: 28422154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat.
    Puig-Oliveras A; Revilla M; Castelló A; Fernández AI; Folch JM; Ballester M
    Sci Rep; 2016 Aug; 6():31803. PubMed ID: 27666082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genomic regions, genetic variants and gene networks regulating candidate genes for lipid metabolism in pig muscle.
    Passols M; Llobet-Cabau F; Sebastià C; Castelló A; Valdés-Hernández J; Criado-Mesas L; Sánchez A; Folch JM
    Animal; 2023 Dec; 17(12):101033. PubMed ID: 38064855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine.
    Ramayo-Caldas Y; Ballester M; Fortes MR; Esteve-Codina A; Castelló A; Noguera JL; Fernández AI; Pérez-Enciso M; Reverter A; Folch JM
    BMC Genomics; 2014 Mar; 15():232. PubMed ID: 24666776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of eQTLs associated with lipid metabolism in Longissimus dorsi muscle of pigs with different genetic backgrounds.
    Criado-Mesas L; Ballester M; Crespo-Piazuelo D; Castelló A; Fernández AI; Folch JM
    Sci Rep; 2020 Jun; 10(1):9845. PubMed ID: 32555447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis.
    Maroilley T; Lemonnier G; Lecardonnel J; Esquerré D; Ramayo-Caldas Y; Mercat MJ; Rogel-Gaillard C; Estellé J
    BMC Genomics; 2017 Dec; 18(1):967. PubMed ID: 29237423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insight into the SSC8 genetic determination of fatty acid composition in pigs.
    Revilla M; Ramayo-Caldas Y; Castelló A; Corominas J; Puig-Oliveras A; Ibáñez-Escriche N; Muñoz M; Ballester M; Folch JM
    Genet Sel Evol; 2014 Apr; 46(1):28. PubMed ID: 24758572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits.
    Ballester M; Revilla M; Puig-Oliveras A; Marchesi JA; Castelló A; Corominas J; Fernández AI; Folch JM
    Anim Genet; 2016 Oct; 47(5):552-9. PubMed ID: 27296287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.
    Corominas J; Ramayo-Caldas Y; Puig-Oliveras A; Estellé J; Castelló A; Alves E; Pena RN; Ballester M; Folch JM
    BMC Genomics; 2013 Dec; 14():843. PubMed ID: 24289474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression analysis of candidate genes for fatty acid composition in adipose tissue and identification of regulatory regions.
    Revilla M; Puig-Oliveras A; Crespo-Piazuelo D; Criado-Mesas L; Castelló A; Fernández AI; Ballester M; Folch JM
    Sci Rep; 2018 Feb; 8(1):2045. PubMed ID: 29391556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of miRNA and mRNA in the livers of pigs with highly diverged backfat thickness.
    Xing K; Zhao X; Ao H; Chen S; Yang T; Tan Z; Wang Y; Zhang F; Liu Y; Ni H; Guo Y; Hou Z; Wang C
    Sci Rep; 2019 Nov; 9(1):16740. PubMed ID: 31727987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of genetic variants and expression levels of porcine FABP4 and FABP5 genes.
    Ballester M; Puig-Oliveras A; Castelló A; Revilla M; Fernández AI; Folch JM
    Anim Genet; 2017 Dec; 48(6):660-668. PubMed ID: 29076225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of allele-specific expression of genes involved in adipogenesis and lipid metabolism suggests complex regulatory mechanisms of PPARGC1A expression in porcine fat tissues.
    Stachowiak M; Szczerbal I; Flisikowski K
    BMC Genet; 2018 Nov; 19(1):107. PubMed ID: 30497374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a low-density SNP panel for intramuscular fat content and fatty acid composition of backfat in free-range Iberian pigs.
    Palma-Granados P; García-Casco JM; Caraballo C; Vázquez-Ortego P; Gómez-Carballar F; Sánchez-Esquiliche F; Óvilo C; Muñoz M
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36930061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic control of longissimus dorsi muscle gene expression variation and joint analysis with phenotypic quantitative trait loci in pigs.
    Velez-Irizarry D; Casiro S; Daza KR; Bates RO; Raney NE; Steibel JP; Ernst CW
    BMC Genomics; 2019 Jan; 20(1):3. PubMed ID: 30606113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds.
    Li M; Zhu L; Li X; Shuai S; Teng X; Xiao H; Li Q; Chen L; Guo Y; Wang J
    Sci China C Life Sci; 2008 Aug; 51(8):718-33. PubMed ID: 18677600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association study confirm major QTL for backfat fatty acid composition on SSC14 in Duroc pigs.
    van Son M; Enger EG; Grove H; Ros-Freixedes R; Kent MP; Lien S; Grindflek E
    BMC Genomics; 2017 May; 18(1):369. PubMed ID: 28494783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genome-wide association study of growth and fatness traits in two pig populations with different genetic backgrounds.
    Jiang Y; Tang S; Wang C; Wang Y; Qin Y; Wang Y; Zhang J; Song H; Mi S; Yu F; Xiao W; Zhang Q; Ding X
    J Anim Sci; 2018 Apr; 96(3):806-816. PubMed ID: 29528397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association study identifying genetic variants associated with carcass backfat thickness, lean percentage and fat percentage in a four-way crossbred pig population using SLAF-seq technology.
    Wang H; Wang X; Yan D; Sun H; Chen Q; Li M; Dong X; Pan Y; Lu S
    BMC Genomics; 2022 Aug; 23(1):594. PubMed ID: 35971078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data.
    Muñoz M; Rodríguez MC; Alves E; Folch JM; Ibañez-Escriche N; Silió L; Fernández AI
    BMC Genomics; 2013 Dec; 14(1):845. PubMed ID: 24295214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.