These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28422209)

  • 1. Engineering the strongly correlated properties of bulk Ruddlesden-Popper transition metal oxides via self-doping.
    Pham A; Li S
    Phys Chem Chem Phys; 2017 May; 19(18):11373-11379. PubMed ID: 28422209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic Evidence of a Dimensionality-Induced Metal-to-Insulator Transition in the Ruddlesden-Popper La
    Di Pietro P; Golalikhani M; Wijesekara K; Chaluvadi SK; Orgiani P; Xi X; Lupi S; Perucchi A
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6813-6819. PubMed ID: 33497183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La
    Forslund RP; Hardin WG; Rong X; Abakumov AM; Filimonov D; Alexander CT; Mefford JT; Iyer H; Kolpak AM; Johnston KP; Stevenson KJ
    Nat Commun; 2018 Aug; 9(1):3150. PubMed ID: 30089833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intergrowth between the Oxynitride Perovskite SrTaO
    Suemoto Y; Masubuchi Y; Nagamine Y; Matsutani A; Shibahara T; Yamazaki K; Kikkawa S
    Inorg Chem; 2018 Aug; 57(15):9086-9095. PubMed ID: 30010331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family.
    Akamatsu H; Fujita K; Kuge T; Sen Gupta A; Togo A; Lei S; Xue F; Stone G; Rondinelli JM; Chen LQ; Tanaka I; Gopalan V; Tanaka K
    Phys Rev Lett; 2014 May; 112(18):187602. PubMed ID: 24856722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides.
    Lee D; Lee HN
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen evolution.
    Zhu Y; Tahini HA; Hu Z; Dai J; Chen Y; Sun H; Zhou W; Liu M; Smith SC; Wang H; Shao Z
    Nat Commun; 2019 Jan; 10(1):149. PubMed ID: 30635568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic mapping of Ruddlesden-Popper faults in transparent conducting BaSnO3-based thin films.
    Wang WY; Tang YL; Zhu YL; Suriyaprakash J; Xu YB; Liu Y; Gao B; Cheong SW; Ma XL
    Sci Rep; 2015 Nov; 5():16097. PubMed ID: 26526665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden-Popper phases.
    Hong Y; Byeon P; Bak J; Heo Y; Kim HS; Bae HB; Chung SY
    Nat Commun; 2021 Sep; 12(1):5527. PubMed ID: 34545102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen Point Defect Chemistry in Ruddlesden-Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu).
    Xie W; Lee YL; Shao-Horn Y; Morgan D
    J Phys Chem Lett; 2016 May; 7(10):1939-44. PubMed ID: 27157124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-Lattice Coupling in Correlated Materials of Low Electron Occupancy.
    Eom K; Choi E; Yoon J; Choi M; Song K; Choi SY; Lee D; Lee JW; Eom CB; Lee J
    Nano Lett; 2017 Sep; 17(9):5458-5463. PubMed ID: 28850246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site Selectivity of Hydride in Early-Transition-Metal Ruddlesden-Popper Oxyhydrides.
    Hernandez OJ; Geneste G; Yajima T; Kobayashi Y; Okura M; Aidzu K; Tassel C; Paofai S; Swain D; Ritter C; Kageyama H
    Inorg Chem; 2018 Sep; 57(17):11058-11067. PubMed ID: 30113162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable indirect-direct transition of few-layer SnSe via interface engineering.
    Sirikumara HI; Jayasekera T
    J Phys Condens Matter; 2017 Oct; 29(42):425501. PubMed ID: 28737499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Enhancement of CO Oxidation on LaFeO
    Bornovski R; Huang LF; Komarala EP; Rondinelli JM; Rosen BA
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33850-33858. PubMed ID: 31460744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensionality-driven insulator-metal transition in A-site excess non-stoichiometric perovskites.
    Wang Z; Okude M; Saito M; Tsukimoto S; Ohtomo A; Tsukada M; Kawasaki M; Ikuhara Y
    Nat Commun; 2010 Nov; 1():106. PubMed ID: 21045824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ELNES study of chemical solution deposited SrO(SrTiO(3))(n) Ruddlesden-Popper films: experiment and simulation.
    Riedl T; Gemming T; Weissbach T; Seifert G; Gutmann E; Zschornak M; Meyer DC; Gemming S
    Ultramicroscopy; 2009 Dec; 110(1):26-32. PubMed ID: 19818559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?
    Tomkiewicz AC; Tamimi MA; Huq A; McIntosh S
    Faraday Discuss; 2015; 182():113-27. PubMed ID: 26206617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massive band gap variation in layered oxides through cation ordering.
    Balachandran PV; Rondinelli JM
    Nat Commun; 2015 Jan; 6():6191. PubMed ID: 25635516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconducting transition metal oxides.
    Lany S
    J Phys Condens Matter; 2015 Jul; 27(28):283203. PubMed ID: 26126022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.