BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 28422452)

  • 1. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads.
    Gilani SL; Najafpour GD; Heydarzadeh HD; Moghadamnia A
    Chirality; 2017 Jun; 29(6):304-314. PubMed ID: 28422452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester.
    Yilmaz E; Can K; Sezgin M; Yilmaz M
    Bioresour Technol; 2011 Jan; 102(2):499-506. PubMed ID: 20846857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester.
    Akoz E; Akbulut OY; Yilmaz M
    Appl Biochem Biotechnol; 2014 Jan; 172(1):509-23. PubMed ID: 24092454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer.
    Yilmaz E; Sezgin M
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1927-40. PubMed ID: 22383051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient enantioselective hydrolysis of D,L-phenylglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems.
    Lou WY; Zong MH; Liu YY; Wang JF
    J Biotechnol; 2006 Aug; 125(1):64-74. PubMed ID: 16563544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-catalyzed enantioselective esterification of (S)-naproxen hydroxyalkyl ester in organic media.
    Chang CS; Hsu CS
    Biotechnol Lett; 2003 Mar; 25(5):413-6. PubMed ID: 12882564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalyzed synthesis of (S)-naproxen ester prodrug by transesterification in organic solvents.
    Tsai SW; Tsai CS; Chang CS
    Appl Biochem Biotechnol; 1999 Jun; 80(3):205-19. PubMed ID: 10488552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Enzymatic resolution of racemic naproxen in a low aqueous-organic biphase system].
    Xin JY; Li SB; Xu Y; Wang LL; Shen RN
    Sheng Wu Gong Cheng Xue Bao; 2000 Jan; 16(1):55-9. PubMed ID: 10883277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of chitosan/TiO2 composite beads for improving stability of porcine pancreatic lipase.
    Deveci I; Doğaç YI; Teke M; Mercimek B
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1052-68. PubMed ID: 25359676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrapment of laurel lipase in chitosan hydrogel beads.
    Yagar H; Balkan U
    Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):864-870. PubMed ID: 27181370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant effect on enhancing (S)-naproxen prodrug production from racemic naproxen by lipase.
    Chang CS; Tsai SW
    Appl Biochem Biotechnol; 1997 Dec; 68(3):135-42. PubMed ID: 9429297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.
    Sayin S; Akoz E; Yilmaz M
    Org Biomol Chem; 2014 Sep; 12(34):6634-42. PubMed ID: 25012138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving catalytic hydrolysis reaction efficiency of sol-gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles.
    Ozyilmaz E; Sayin S; Arslan M; Yilmaz M
    Colloids Surf B Biointerfaces; 2014 Jan; 113():182-9. PubMed ID: 24090713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic solvents.
    Ng IS; Tsai SW
    Biotechnol Bioeng; 2005 Jan; 89(1):88-95. PubMed ID: 15543625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts' Properties of Rhizomucor miehei Lipase onto Chitosan.
    de Oliveira UMF; Lima de Matos LJB; de Souza MCM; Pinheiro BB; Dos Santos JCS; Gonçalves LRB
    Appl Biochem Biotechnol; 2018 Apr; 184(4):1263-1285. PubMed ID: 29019010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase.
    Takaç S; Unlü AE
    Prep Biochem Biotechnol; 2009; 39(2):124-41. PubMed ID: 19291575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of reactive membrane extraction with lipase-hydrolysis dynamic kinetic resolution of naproxen 2,2,2-trifluoroethyl thioester in isooctane.
    Lu CH; Cheng YC; Tsai SW
    Biotechnol Bioeng; 2002 Jul; 79(2):200-10. PubMed ID: 12115436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective esterification of racemic naproxen by lipases in organic solvent.
    Tsai SW; Wei HJ
    Enzyme Microb Technol; 1994 Apr; 16(4):328-33. PubMed ID: 7764635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.