BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28422453)

  • 1. How many roads lead to cohesinopathies?
    Banerji R; Skibbens RV; Iovine MK
    Dev Dyn; 2017 Nov; 246(11):881-888. PubMed ID: 28422453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.
    Mönnich M; Kuriger Z; Print CG; Horsfield JA
    PLoS One; 2011; 6(5):e20051. PubMed ID: 21637801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expanding phenotypes of cohesinopathies: one ring to rule them all!
    Piché J; Van Vliet PP; Pucéat M; Andelfinger G
    Cell Cycle; 2019 Nov; 18(21):2828-2848. PubMed ID: 31516082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesinopathies of a feather flock together.
    Skibbens RV; Colquhoun JM; Green MJ; Molnar CA; Sin DN; Sullivan BJ; Tanzosh EE
    PLoS Genet; 2013; 9(12):e1004036. PubMed ID: 24367282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esco2 and cohesin regulate CRL4 ubiquitin ligase
    Sanchez AC; Thren ED; Iovine MK; Skibbens RV
    Cell Cycle; 2022 Mar; 21(5):501-513. PubMed ID: 34989322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome.
    Banerji R; Skibbens RV; Iovine MK
    Biol Open; 2017 Dec; 6(12):1802-1813. PubMed ID: 29084713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CyclinD1 Down-Regulation and Increased Apoptosis Are Common Features of Cohesinopathies.
    Fazio G; Gaston-Massuet C; Bettini LR; Graziola F; Scagliotti V; Cereda A; Ferrari L; Mazzola M; Cazzaniga G; Giordano A; Cotelli F; Bellipanni G; Biondi A; Selicorni A; Pistocchi A; Massa V
    J Cell Physiol; 2016 Mar; 231(3):613-22. PubMed ID: 26206533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Esco2 regulates cx43 expression during skeletal regeneration in the zebrafish fin.
    Banerji R; Eble DM; Iovine MK; Skibbens RV
    Dev Dyn; 2016 Jan; 245(1):7-21. PubMed ID: 26434741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cohesinopathies: One ring, many obligations.
    McNairn AJ; Gerton JL
    Mutat Res; 2008 Dec; 647(1-2):103-11. PubMed ID: 18786550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome.
    Xu B; Lee KK; Zhang L; Gerton JL
    PLoS Genet; 2013; 9(10):e1003857. PubMed ID: 24098154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.
    Xu B; Sowa N; Cardenas ME; Gerton JL
    Hum Mol Genet; 2015 Mar; 24(6):1540-55. PubMed ID: 25378554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome.
    Muto A; Calof AL; Lander AD; Schilling TF
    PLoS Biol; 2011 Oct; 9(10):e1001181. PubMed ID: 22039349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cornelia de Lange syndrome: further delineation of phenotype, cohesin biology and educational focus, 5th Biennial Scientific and Educational Symposium abstracts.
    Kline AD; Calof AL; Schaaf CA; Krantz ID; Jyonouchi S; Yokomori K; Gauze M; Carrico CS; Woodman J; Gerton JL; Vega H; Levin AV; Shirahige K; Champion M; Goodban MT; O'Connor JT; Pipan M; Horsfield J; Deardorff MA; Ishman SL; Dorsett D
    Am J Med Genet A; 2014 Jun; 164A(6):1384-93. PubMed ID: 24504889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etiology and pathogenesis of the cohesinopathies.
    Zakari M; Yuen K; Gerton JL
    Wiley Interdiscip Rev Dev Biol; 2015; 4(5):489-504. PubMed ID: 25847322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cornelia de Lange syndrome, cohesin, and beyond.
    Liu J; Krantz ID
    Clin Genet; 2009 Oct; 76(4):303-14. PubMed ID: 19793304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational mechanisms at work in the cohesinopathies.
    Gerton JL
    Nucleus; 2012; 3(6):520-5. PubMed ID: 23138777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohesin and human disease.
    Liu J; Krantz ID
    Annu Rev Genomics Hum Genet; 2008; 9():303-20. PubMed ID: 18767966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAD21 mutations cause a human cohesinopathy.
    Deardorff MA; Wilde JJ; Albrecht M; Dickinson E; Tennstedt S; Braunholz D; Mönnich M; Yan Y; Xu W; Gil-Rodríguez MC; Clark D; Hakonarson H; Halbach S; Michelis LD; Rampuria A; Rossier E; Spranger S; Van Maldergem L; Lynch SA; Gillessen-Kaesbach G; Lüdecke HJ; Ramsay RG; McKay MJ; Krantz ID; Xu H; Horsfield JA; Kaiser FJ
    Am J Hum Genet; 2012 Jun; 90(6):1014-27. PubMed ID: 22633399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome stability: What we have learned from cohesinopathies.
    Cucco F; Musio A
    Am J Med Genet C Semin Med Genet; 2016 Jun; 172(2):171-8. PubMed ID: 27091086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using mouse and zebrafish models to understand the etiology of developmental defects in Cornelia de Lange Syndrome.
    Kawauchi S; Santos R; Muto A; Lopez-Burks ME; Schilling TF; Lander AD; Calof AL
    Am J Med Genet C Semin Med Genet; 2016 Jun; 172(2):138-45. PubMed ID: 27120001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.