BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28422551)

  • 1. Estimation of Gait Independence Using a Tri-Axial Accelerometer in Stroke Patients.
    Kijima Y; Kiyama R; Sekine M; Tamura T; Fujimoto T; Maeda T; Ohshige T
    J Aging Phys Act; 2018 Jan; 26(1):61-67. PubMed ID: 28422551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometer-based gait characteristics and their discrimination of gait independence in inpatients with subacute stroke.
    Igarashi T; Tani Y; Takeda R; Asakura T
    Gait Posture; 2024 May; 110():138-143. PubMed ID: 38581934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between trunk acceleration during walking and clinically assessed balance in patients with stroke.
    Osaka H; Shinkoda K; Watanabe S; Fujita D; Kobara K; Yoshimura Y; Ito T; Suehiro T
    NeuroRehabilitation; 2017; 41(4):783-790. PubMed ID: 29254113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of stroke patient walking dynamics using a tri-axial accelerometer.
    Mizuike C; Ohgi S; Morita S
    Gait Posture; 2009 Jul; 30(1):60-4. PubMed ID: 19349181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerometry-based gait characteristics evaluated using a smartphone and their association with fall risk in people with chronic stroke.
    Isho T; Tashiro H; Usuda S
    J Stroke Cerebrovasc Dis; 2015 Jun; 24(6):1305-11. PubMed ID: 25881773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System.
    Hsu CY; Tsai YS; Yau CS; Shie HH; Wu CM
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27455281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of gait symmetry using a tri-axial accelerometer in stroke patients.
    Terui Y; Suto E; Konno Y; Kubota K; Iwakura M; Satou M; Nitta S; Hasegawa K; Satake M; Shioya T
    NeuroRehabilitation; 2018; 42(2):173-180. PubMed ID: 29562555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer.
    Kobsar D; Olson C; Paranjape R; Hadjistavropoulos T; Barden JM
    Gait Posture; 2014; 39(1):553-7. PubMed ID: 24139685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root mean square of lower trunk acceleration during walking in patients with unilateral total hip replacement.
    Wada O; Asai T; Hiyama Y; Nitta S; Mizuno K
    Gait Posture; 2017 Oct; 58():19-22. PubMed ID: 28704684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration.
    Kobayashi H; Kakihana W; Kimura T
    J Neuroeng Rehabil; 2014 Jul; 11():109. PubMed ID: 24993146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Gait Strategy and Speed on Regularity of Locomotion Assessed in Healthy Subjects Using a Multi-Sensor Method.
    Rabuffetti M; Scalera GM; Ferrarin M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Symmetry Assessment with a Low Back 3D Accelerometer in Post-Stroke Patients.
    Zhang W; Smuck M; Legault C; Ith MA; Muaremi A; Aminian K
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30282947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criterion validity of 3D trunk accelerations to assess external work and power in able-bodied gait.
    Meichtry A; Romkes J; Gobelet C; Brunner R; Müller R
    Gait Posture; 2007 Jan; 25(1):25-32. PubMed ID: 16483779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.
    Schütte KH; Maas EA; Exadaktylos V; Berckmans D; Venter RE; Vanwanseele B
    PLoS One; 2015; 10(10):e0141957. PubMed ID: 26517261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of spatio-temporal parameters during unconstrained walking.
    Zijlstra W
    Eur J Appl Physiol; 2004 Jun; 92(1-2):39-44. PubMed ID: 14985994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of trunk control with mobility performance and accelerometry-based gait characteristics in hemiparetic patients with subacute stroke.
    Isho T; Usuda S
    Gait Posture; 2016 Feb; 44():89-93. PubMed ID: 27004638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerometry-based gait analysis predicts falls among patients with a recent fracture who are ambulatory: a 1-year prospective study.
    Matsumoto H; Makabe T; Morita T; Ikuhara K; Kajigase A; Okamoto Y; Ashikawa E; Kobayashi E; Hagino H
    Int J Rehabil Res; 2015 Jun; 38(2):131-6. PubMed ID: 25486217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait variability analysed using an accelerometer is associated with locomotive syndrome among the general elderly population: The GAINA study.
    Matsumoto H; Hagino H; Osaki M; Tanishima S; Tanimura C; Matsuura A; Makabe T
    J Orthop Sci; 2016 May; 21(3):354-60. PubMed ID: 27020175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.