BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28422551)

  • 21. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between muscle impairments, postural stability, and gait parameters assessed with lower-trunk accelerometry in myotonic dystrophy type 1.
    Bachasson D; Moraux A; Ollivier G; Decostre V; Ledoux I; Gidaro T; Servais L; Behin A; Stojkovic T; Hébert LJ; Puymirat J; Eymard B; Bassez G; Hogrel JY
    Neuromuscul Disord; 2016 Jul; 26(7):428-35. PubMed ID: 27234310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.
    Sabatini AM; Ligorio G; Mannini A
    Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis and decomposition of signals obtained by thigh-fixed uni-axial accelerometry during normal walking.
    Bussmann JB; Damen L; Stam HJ
    Med Biol Eng Comput; 2000 Nov; 38(6):632-8. PubMed ID: 11217880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait and posture discrimination in sheep using a tri-axial accelerometer.
    Radeski M; Ilieski V
    Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of a Trunk Accelerometer System to the Characterization of Gait in Patients With Mild-to-Moderate Parkinson's Disease.
    Demonceau M; Donneau AF; Croisier JL; Skawiniak E; Boutaayamou M; Maquet D; Garraux G
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1803-8. PubMed ID: 26292350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in trunk control between early and late pregnancy during gait.
    Sawa R; Doi T; Asai T; Watanabe K; Taniguchi T; Ono R
    Gait Posture; 2015 Oct; 42(4):455-9. PubMed ID: 26260008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A kinematic human-walking model for the normal-gait-speed estimation using tri-axial acceleration signals at waist location.
    Hu JS; Sun KC; Cheng CY
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2271-9. PubMed ID: 23529073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Body Acceleration as Indicator for Walking Economy in an Ageing Population.
    Valenti G; Bonomi AG; Westerterp KR
    PLoS One; 2015; 10(10):e0141431. PubMed ID: 26512982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke.
    Bergamini E; Iosa M; Belluscio V; Morone G; Tramontano M; Vannozzi G
    J Biomech; 2017 Aug; 61():208-215. PubMed ID: 28823468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of walking speed on the gait of king penguins: An accelerometric approach.
    Willener AS; Handrich Y; Halsey LG; Strike S
    J Theor Biol; 2015 Dec; 387():166-73. PubMed ID: 26427338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Coefficient of Variation of Step Time Can Overestimate Gait Abnormality: Test-Retest Reliability of Gait-Related Parameters Obtained with a Tri-Axial Accelerometer in Healthy Subjects.
    Fujiwara S; Sato S; Sugawara A; Nishikawa Y; Koji T; Nishimura Y; Ogasawara K
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31972959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of various visual conditions on trunk control during ambulation in chronic post stroke patients.
    Aoki O; Otani Y; Morishita S; Domen K
    Gait Posture; 2017 Feb; 52():301-307. PubMed ID: 28033576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Longitudinal changes in trunk acceleration and their relationship with gait parameters in post-stroke hemiplegic patients.
    Todaka R; Kajiyama T; Kariu N; Anan M
    Hum Mov Sci; 2024 Feb; 93():103176. PubMed ID: 38160497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects.
    Saremi K; Marehbian J; Yan X; Regnaux JP; Elashoff R; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2006 Jun; 20(2):297-305. PubMed ID: 16679506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prescription footwear for severe injuries of foot and ankle: effect on regularity and symmetry of the gait assessed by trunk accelerometry.
    Terrier P; Dériaz O; Meichtry A; Luthi F
    Gait Posture; 2009 Nov; 30(4):492-6. PubMed ID: 19709884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.
    Schütte KH; Aeles J; De Beéck TO; van der Zwaard BC; Venter R; Vanwanseele B
    Gait Posture; 2016 Jul; 48():220-225. PubMed ID: 27318455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait Asymmetry Post-Stroke: Determining Valid and Reliable Methods Using a Single Accelerometer Located on the Trunk.
    Buckley C; Micó-Amigo ME; Dunne-Willows M; Godfrey A; Hickey A; Lord S; Rochester L; Del Din S; Moore SA
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consistency of gait characteristics as determined from acceleration data collected at different trunk locations.
    Rispens SM; Pijnappels M; van Schooten KS; Beek PJ; Daffertshofer A; van Dieën JH
    Gait Posture; 2014; 40(1):187-92. PubMed ID: 24780202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age.
    Terrier P; Reynard F
    Gait Posture; 2015 Jan; 41(1):170-4. PubMed ID: 25455699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.