These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28422687)

  • 1. Theoretical Limits on Multiuser Molecular Communication in Internet of Nano-Bio Things.
    Dinc E; Akan OB
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):266-270. PubMed ID: 28422687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.
    Abbasi NA; Akan OB
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):783-791. PubMed ID: 29028203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Exact Performance Analysis of Molecular Communication via Diffusion for Internet of Bio-Nano Things.
    Dissanayake MB; Ekanayake N
    IEEE Trans Nanobioscience; 2021 Jul; 20(3):291-295. PubMed ID: 33835921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum Likelihood Detection With Ligand Receptors for Diffusion-Based Molecular Communications in Internet of Bio-Nano Things.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):44-54. PubMed ID: 29570074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thresholdless Detection of Symbols in Nano-Communication Systems.
    Sharma S; Deka K; Bhatia V
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symbol interval optimization for molecular communication with drift.
    Kim NR; Eckford AW; Chae CB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):223-9. PubMed ID: 25163067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Two Receivers on Broadcast Molecular Communication Systems.
    Lu Y; Higgins MD; Noel A; Leeson MS; Chen Y
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):891-900. PubMed ID: 27775906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Securing Bio-Cyber Interface for the Internet of Bio-Nano Things using Particle Swarm Optimization and Artificial Neural Networks based parameter profiling.
    Zafar S; Nazir M; Sabah A; Jurcut AD
    Comput Biol Med; 2021 Sep; 136():104707. PubMed ID: 34375900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Complexity Channel Codes for Reliable Molecular Communication via Diffusion.
    Figueiredo S; Souto N; Cercas F
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):208-22. PubMed ID: 25163066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonparametric stochastic optimizer for TDMA-based neuronal signaling.
    Suzuki J; Phan DH; Budiman H
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):244-54. PubMed ID: 25265562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacity Evaluation of a Quantum-Based Channel in a Biological Context.
    Loscri V; Vegni AM
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):901-907. PubMed ID: 28092502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of molecular relay channels: an information theoretic approach.
    Nakano T; Liu JQ
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):213-21. PubMed ID: 20525537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.
    Li B; Sun M; Wang S; Guo W; Zhao C
    IEEE Trans Nanobioscience; 2016 Jan; 15(1):3-10. PubMed ID: 26685259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Complexity Adaptive Threshold Detection for Molecular Communication.
    Damrath M; Hoeher PA
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):200-8. PubMed ID: 26812729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Relay for Energy-Efficient Molecular Communications.
    Qiu S; Haselmayr W; Li B; Zhao C; Guo W
    IEEE Trans Nanobioscience; 2017 Oct; 16(7):555-562. PubMed ID: 28829314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.