These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28423039)
1. Electricity forecasting on the individual household level enhanced based on activity patterns. Gajowniczek K; Ząbkowski T PLoS One; 2017; 12(4):e0174098. PubMed ID: 28423039 [TBL] [Abstract][Full Text] [Related]
2. Short-term power load forecasting based on the CEEMDAN-TCN-ESN model. Huang J; Zhang X; Jiang X PLoS One; 2023; 18(10):e0284604. PubMed ID: 37883410 [TBL] [Abstract][Full Text] [Related]
3. Development and application of a ZigBee-based building energy monitoring and control system. Peng C; Qian K ScientificWorldJournal; 2014; 2014():528410. PubMed ID: 25254249 [TBL] [Abstract][Full Text] [Related]
4. Usage monitoring of electrical devices in a smart home. Rahimi S; Chan AD; Goubran RA Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5307-10. PubMed ID: 22255536 [TBL] [Abstract][Full Text] [Related]
5. Real-time recommendations for energy-efficient appliance usage in households. Eirinaki M; Varlamis I; Dahihande J; Jaiswal A; Pagar AA; Thakare A Front Big Data; 2022; 5():972206. PubMed ID: 36204447 [TBL] [Abstract][Full Text] [Related]
6. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Alsharekh MF; Habib S; Dewi DA; Albattah W; Islam M; Albahli S Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146256 [TBL] [Abstract][Full Text] [Related]
7. ELECTRIcity: An Efficient Transformer for Non-Intrusive Load Monitoring. Sykiotis S; Kaselimi M; Doulamis A; Doulamis N Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458907 [TBL] [Abstract][Full Text] [Related]
8. Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks. Dumitru CD; Gligor A; Vlasa I; Simo A; Dzitac S Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772528 [TBL] [Abstract][Full Text] [Related]
9. A Two-Stage Multistep-Ahead Electricity Load ForecastingScheme Based on LightGBM and Attention-BiLSTM. Park J; Hwang E Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833791 [TBL] [Abstract][Full Text] [Related]
10. Towards Efficient Electricity Forecasting in Residential and Commercial Buildings: A Novel Hybrid CNN with a LSTM-AE based Framework. Khan ZA; Hussain T; Ullah A; Rho S; Lee M; Baik SW Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143371 [TBL] [Abstract][Full Text] [Related]
11. Improved Neural Networks with Random Weights for Short-Term Load Forecasting. Lang K; Zhang M; Yuan Y PLoS One; 2015; 10(12):e0143175. PubMed ID: 26629825 [TBL] [Abstract][Full Text] [Related]
12. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Pavićević M; Popović T Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161797 [TBL] [Abstract][Full Text] [Related]
13. Forecasting the annual household electricity consumption of Chinese residents using the DPSO-BP prediction model. Wen L; Yuan X Environ Sci Pollut Res Int; 2020 Jun; 27(17):22014-22032. PubMed ID: 32291639 [TBL] [Abstract][Full Text] [Related]
14. Optimal Operation of the Hybrid Electricity Generation System Using Multiverse Optimization Algorithm. Sulaiman M; Ahmad S; Iqbal J; Khan A; Khan R Comput Intell Neurosci; 2019; 2019():6192980. PubMed ID: 30984252 [TBL] [Abstract][Full Text] [Related]
15. Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data. Chung J; Jang B PLoS One; 2022; 17(11):e0278071. PubMed ID: 36417448 [TBL] [Abstract][Full Text] [Related]
16. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sun L; Qin H; Przystupa K; Majka M; Kochan O Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298250 [TBL] [Abstract][Full Text] [Related]
17. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market. Bozkurt ÖÖ; Biricik G; Tayşi ZC PLoS One; 2017; 12(4):e0175915. PubMed ID: 28426739 [TBL] [Abstract][Full Text] [Related]
18. Electricity Load and Price Forecasting Using Jaya-Long Short Term Memory (JLSTM) in Smart Grids. Khalid R; Javaid N; Al-Zahrani FA; Aurangzeb K; Qazi EU; Ashfaq T Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285785 [TBL] [Abstract][Full Text] [Related]
19. Developing a Mixed Neural Network Approach to Forecast the Residential Electricity Consumption Based on Sensor Recorded Data. Oprea SV; Pîrjan A; Căruțașu G; Petroșanu DM; Bâra A; Stănică JL; Coculescu C Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734761 [TBL] [Abstract][Full Text] [Related]
20. Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption. Fontana M; Tavoni M; Vantini S PLoS One; 2019; 14(6):e0218702. PubMed ID: 31237923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]