BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28423196)

  • 41. Proinflammatory S100A9 Regulates Differentiation and Aggregation of Neural Stem Cells.
    Tian Y; Cao R; Che B; Sun D; Tang Y; Jiang L; Bai Q; Liu Y; Morozova-Roche LA; Zhang C
    ACS Chem Neurosci; 2020 Nov; 11(21):3549-3556. PubMed ID: 33079539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Melatonin induces neural SOD2 expression independent of the NF-kappaB pathway and improves the mitochondrial population and function in old mice.
    García-Macia M; Vega-Naredo I; De Gonzalo-Calvo D; Rodríguez-González SM; Camello PJ; Camello-Almaraz C; Martín-Cano FE; Rodríguez-Colunga MJ; Pozo MJ; Coto-Montes AM
    J Pineal Res; 2011 Jan; 50(1):54-63. PubMed ID: 21062349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gain of BDNF Function in Engrafted Neural Stem Cells Promotes the Therapeutic Potential for Alzheimer's Disease.
    Wu CC; Lien CC; Hou WH; Chiang PM; Tsai KJ
    Sci Rep; 2016 Jun; 6():27358. PubMed ID: 27264956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Overexpression of Wnt3a facilitates the proliferation and neural differentiation of neural stem cells in vitro and after transplantation into an injured rat retina.
    Yang XT; Bi YY; Chen ET; Feng DF
    J Neurosci Res; 2014 Feb; 92(2):148-61. PubMed ID: 24254835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential effects of melatonin on amyloid-beta peptide 25-35-induced mitochondrial dysfunction in hippocampal neurons at different stages of culture.
    Dong W; Huang F; Fan W; Cheng S; Chen Y; Zhang W; Shi H; He H
    J Pineal Res; 2010 Mar; 48(2):117-25. PubMed ID: 20041986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Timing of intra-arterial neural stem cell transplantation after hypoxia-ischemia influences cell engraftment, survival, and differentiation.
    Rosenblum S; Wang N; Smith TN; Pendharkar AV; Chua JY; Birk H; Guzman R
    Stroke; 2012 Jun; 43(6):1624-31. PubMed ID: 22535265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis.
    Khacho M; Clark A; Svoboda DS; MacLaurin JG; Lagace DC; Park DS; Slack RS
    Hum Mol Genet; 2017 Sep; 26(17):3327-3341. PubMed ID: 28595361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases.
    López A; Ortiz F; Doerrier C; Venegas C; Fernández-Ortiz M; Aranda P; Díaz-Casado ME; Fernández-Gil B; Barriocanal-Casado E; Escames G; López LC; Acuña-Castroviejo D
    PLoS One; 2017; 12(8):e0183090. PubMed ID: 28800639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Allopregnanolone Promotes Neuronal and Oligodendrocyte Differentiation In Vitro and In Vivo: Therapeutic Implication for Alzheimer's Disease.
    Chen S; Wang T; Yao J; Brinton RD
    Neurotherapeutics; 2020 Oct; 17(4):1813-1824. PubMed ID: 32632771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery in Parkinsonian mice.
    Cui YF; Hargus G; Xu JC; Schmid JS; Shen YQ; Glatzel M; Schachner M; Bernreuther C
    Brain; 2010 Jan; 133(Pt 1):189-204. PubMed ID: 19995872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice.
    Aliev G; Seyidova D; Lamb BT; Obrenovich ME; Siedlak SL; Vinters HV; Friedland RP; LaManna JC; Smith MA; Perry G
    Neurol Res; 2003 Sep; 25(6):665-74. PubMed ID: 14503022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amyloid-β Oligomers-induced Mitochondrial DNA Repair Impairment Contributes to Altered Human Neural Stem Cell Differentiation.
    Lu J; Li Y; Mollinari C; Garaci E; Merlo D; Pei G
    Curr Alzheimer Res; 2019; 16(10):934-949. PubMed ID: 31642778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effects of neural stem cells transplanted into an animal model of Alzheimer disease on Aβ plaques].
    Zhang W; Wang PJ; Gu GJ; Li MH; Gao XL
    Zhonghua Yi Xue Za Zhi; 2013 Dec; 93(45):3636-9. PubMed ID: 24534321
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury.
    Park KI; Himes BT; Stieg PE; Tessler A; Fischer I; Snyder EY
    Exp Neurol; 2006 May; 199(1):179-90. PubMed ID: 16714016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of neural stem cell transplantation in Alzheimer's disease models.
    Hayashi Y; Lin HT; Lee CC; Tsai KJ
    J Biomed Sci; 2020 Jan; 27(1):29. PubMed ID: 31987051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism.
    Bifari F; Dolci S; Bottani E; Pino A; Di Chio M; Zorzin S; Ragni M; Zamfir RG; Brunetti D; Bardelli D; Delfino P; Cattaneo MG; Bordo R; Tedesco L; Rossi F; Bossolasco P; Corbo V; Fumagalli G; Nisoli E; Valerio A; Decimo I
    Pharmacol Res; 2020 Aug; 158():104863. PubMed ID: 32407957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression.
    Manczak M; Anekonda TS; Henson E; Park BS; Quinn J; Reddy PH
    Hum Mol Genet; 2006 May; 15(9):1437-49. PubMed ID: 16551656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells.
    Balasubramaniyan V; Boddeke E; Bakels R; Küst B; Kooistra S; Veneman A; Copray S
    Neuroscience; 2006 Dec; 143(4):939-51. PubMed ID: 17084985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation.
    Zhou W; Zhao T; Du J; Ji G; Li X; Ji S; Tian W; Wang X; Hao A
    Cell Death Dis; 2019 Feb; 10(3):198. PubMed ID: 30814486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes.
    Jády AG; Nagy ÁM; Kőhidi T; Ferenczi S; Tretter L; Madarász E
    Stem Cells Dev; 2016 Jul; 25(13):995-1005. PubMed ID: 27116891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.