BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28423204)

  • 21. High-valent oxo-molybdenum and oxo-rhenium complexes as efficient catalysts for X-H (X = Si, B, P and H) bond activation and for organic reductions.
    Sousa SC; Cabrita I; Fernandes AC
    Chem Soc Rev; 2012 Sep; 41(17):5641-53. PubMed ID: 22786441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DFT Studies on the Mechanism of the Vanadium-Catalyzed Deoxydehydration of Diols.
    Galindo A
    Inorg Chem; 2016 Mar; 55(5):2284-9. PubMed ID: 26900876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Radical Mechanism for the Vanadium-Catalyzed Deoxydehydration of Glycols.
    de Vicente Poutás LC; Castiñeira Reis M; Sanz R; López CS; Faza ON
    Inorg Chem; 2016 Nov; 55(21):11372-11382. PubMed ID: 27740760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First Evidence of the Double-Bond Formation by Deoxydehydration of Glycerol and 1,2-Propanediol in Ionic Liquids.
    Mascitti A; Scioli G; Tonucci L; Canale V; Germani R; Di Profio P; d'Alessandro N
    ACS Omega; 2022 Aug; 7(32):27980-27990. PubMed ID: 35990467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vanadium-catalyzed deoxydehydration of glycols.
    Chapman G; Nicholas KM
    Chem Commun (Camb); 2013 Sep; 49(74):8199-201. PubMed ID: 23925040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols.
    Shiramizu M; Toste FD
    Angew Chem Int Ed Engl; 2012 Aug; 51(32):8082-6. PubMed ID: 22764085
    [No Abstract]   [Full Text] [Related]  

  • 27. Catalytic deoxydehydration of glycols with alcohol reductants.
    Boucher-Jacobs C; Nicholas KM
    ChemSusChem; 2013 Apr; 6(4):597-9. PubMed ID: 23532937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen activation by high-valent oxo-molybdenum(VI) and -rhenium(VII) and -(V) compounds.
    Reis PM; Costa PJ; Romão CC; Fernandes JA; Calhorda MJ; Royo B
    Dalton Trans; 2008 Apr; (13):1727-33. PubMed ID: 18354770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhenium-catalyzed deoxydehydration of glycols by sulfite.
    Vkuturi S; Chapman G; Ahmad I; Nicholas KM
    Inorg Chem; 2010 Jun; 49(11):4744-6. PubMed ID: 20441161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic Characterization of a Monomeric, Cyclopentadienyl-Based Rhenium(V) Dioxo Complex.
    Raju S; Jastrzebski JT; Lutz M; Witteman L; Dethlefsen JR; Fristrup P; Moret ME; Gebbink RJ
    Inorg Chem; 2015 Nov; 54(22):11031-6. PubMed ID: 26517008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and OH groups.
    Tomishige K; Nakagawa Y; Tamura M
    Top Curr Chem; 2014; 353():127-62. PubMed ID: 24699899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational study on the reaction mechanism of hydrosilylation of carbonyls catalyzed by high-valent rhenium(V)-di-oxo complexes.
    Chung LW; Lee HG; Lin Z; Wu YD
    J Org Chem; 2006 Aug; 71(16):6000-9. PubMed ID: 16872182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous multifunctional catalysts for tandem processes: an approach toward sustainability.
    Felpin FX; Fouquet E
    ChemSusChem; 2008; 1(8-9):718-24. PubMed ID: 18686283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics.
    Yi J; Liu S; Abu-Omar MM
    ChemSusChem; 2012 Aug; 5(8):1401-4. PubMed ID: 22692826
    [No Abstract]   [Full Text] [Related]  

  • 37. Design of mononuclear ruthenium catalysts for low-overpotential water oxidation.
    Okamura M; Masaoka S
    Chem Asian J; 2015 Feb; 10(2):306-15. PubMed ID: 25318678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhenium-catalysed reactions in chemical synthesis: selected case studies.
    Olding A; Tang M; Ho CC; Fuller RO; Bissember AC
    Dalton Trans; 2022 Feb; 51(8):3004-3018. PubMed ID: 35098957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A whiff of oxygen before the great oxidation event?
    Anbar AD; Duan Y; Lyons TW; Arnold GL; Kendall B; Creaser RA; Kaufman AJ; Gordon GW; Scott C; Garvin J; Buick R
    Science; 2007 Sep; 317(5846):1903-6. PubMed ID: 17901330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes.
    Kück JW; Reich RM; Kühn FE
    Chem Rec; 2016 Feb; 16(1):349-64. PubMed ID: 26776087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.