These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 2842343)
21. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Kitsugi T; Yamamuro T; Nakamura T; Kotani S; Kokubo T; Takeuchi H Biomaterials; 1993 Feb; 14(3):216-24. PubMed ID: 8386554 [TBL] [Abstract][Full Text] [Related]
22. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Galois L; Mainard D Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463 [TBL] [Abstract][Full Text] [Related]
23. Incorporation and degradation of hydroxyapatite implants of different surface roughness and surface structure in bone. Müller-Mai CM; Voigt C; Gross U Scanning Microsc; 1990 Sep; 4(3):613-22; discussion 622-4. PubMed ID: 2080426 [TBL] [Abstract][Full Text] [Related]
24. [Electron microscopic study of a macroporous calcium phosphate ceramic implanted in an osseous site]. Grizon F; Filmon R; Chappard D; Rebel A; Basle MF Bull Assoc Anat (Nancy); 1994 Mar; 78(240):39-45. PubMed ID: 8054695 [TBL] [Abstract][Full Text] [Related]
25. Osteoinduction of Calcium Phosphate Ceramics in Four Kinds of Animals for 1 Year: Dog, Rabbit, Rat, and Mouse. Cheng L; Wang T; Zhu J; Cai P Transplant Proc; 2016 May; 48(4):1309-14. PubMed ID: 27320611 [TBL] [Abstract][Full Text] [Related]
26. Integration of dense HA rods into cortical bone. Benhayoune H; Jallot E; Laquerriere P; Balossier G; Bonhomme P; Frayssinet P Biomaterials; 2000 Feb; 21(3):235-42. PubMed ID: 10646939 [TBL] [Abstract][Full Text] [Related]
27. Gap healing enhanced by hydroxyapatite coating in dogs. Søballe K; Hansen ES; Brockstedt-Rasmussen H; Hjortdal VE; Juhl GI; Pedersen CM; Hvid I; Bünger C Clin Orthop Relat Res; 1991 Nov; (272):300-7. PubMed ID: 1657476 [TBL] [Abstract][Full Text] [Related]
28. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117 [TBL] [Abstract][Full Text] [Related]
29. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. Jarcho M; Kay JF; Gumaer KI; Doremus RH; Drobeck HP J Bioeng; 1977 Jan; 1(2):79-92. PubMed ID: 355244 [TBL] [Abstract][Full Text] [Related]
30. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Klein CP; Patka P; den Hollander W Biomaterials; 1989 Jan; 10(1):59-62. PubMed ID: 2540845 [TBL] [Abstract][Full Text] [Related]
31. Comparison of tissue reaction and osteointegration of metal implants between hydroxyapatite/Ti alloy coat: an animal experimental study. Itiravivong P; Promasa A; Laiprasert T; Techapongworachai T; Kuptniratsaikul S; Thanakit V; Heimann RB J Med Assoc Thai; 2003 Jun; 86 Suppl 2():S422-31. PubMed ID: 12930020 [TBL] [Abstract][Full Text] [Related]
32. Reconstruction of large bone defects with calcium phosphate ceramics--an experimental study. Patka P; den Otter G; de Groot K; Driessen AA Neth J Surg; 1985 Apr; 37(2):38-44. PubMed ID: 4000517 [TBL] [Abstract][Full Text] [Related]
33. The material science of calcium phosphate ceramics. Osborn JF; Newesely H Biomaterials; 1980 Apr; 1(2):108-11. PubMed ID: 7470556 [TBL] [Abstract][Full Text] [Related]
34. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831 [TBL] [Abstract][Full Text] [Related]
35. Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite. Li ZL; Kitsugi T; Yamamuro T; Chang YS; Senaha Y; Takagi H; Nakamura T; Oka M J Biomed Mater Res; 1995 Sep; 29(9):1081-8. PubMed ID: 8567706 [TBL] [Abstract][Full Text] [Related]
36. Use of dual-energy X-ray absorptiometry (DEXA) to follow mineral content changes in small ceramic implants in rats. Mosheiff R; Klein BY; Leichter I; Chaimsky G; Nyska A; Peyser A; Segal D Biomaterials; 1992; 13(7):462-6. PubMed ID: 1321675 [TBL] [Abstract][Full Text] [Related]
37. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128 [TBL] [Abstract][Full Text] [Related]
38. Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic: influence of the implantation site. Rohanizadeh R; Trécant-Viana M; Daculsi G Calcif Tissue Int; 1999 May; 64(5):430-6. PubMed ID: 10203420 [TBL] [Abstract][Full Text] [Related]
39. Hydroxyapatite-alumina composites and bone-bonding. Li J; Fartash B; Hermansson L Biomaterials; 1995 Mar; 16(5):417-22. PubMed ID: 7662828 [TBL] [Abstract][Full Text] [Related]
40. [Tissue reaction after implantation of sintered porous hydroxyapatite in the distal metaphysis or epiphysis of the femur of rabbits]. Matsuzaki N Nihon Seikeigeka Gakkai Zasshi; 1993 Apr; 67(4):289-97. PubMed ID: 8391559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]