These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 28423792)
1. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques. Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792 [TBL] [Abstract][Full Text] [Related]
2. Binary acronym disambiguation in clinical notes from electronic health records with an application in computational phenotyping. Link NB; Huang S; Cai T; Sun J; Dahal K; Costa L; Cho K; Liao K; Cai T; Hong C; Int J Med Inform; 2022 Apr; 162():104753. PubMed ID: 35405530 [TBL] [Abstract][Full Text] [Related]
3. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599 [TBL] [Abstract][Full Text] [Related]
4. Challenges in clinical natural language processing for automated disorder normalization. Leaman R; Khare R; Lu Z J Biomed Inform; 2015 Oct; 57():28-37. PubMed ID: 26187250 [TBL] [Abstract][Full Text] [Related]
5. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
6. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
7. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review. Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219 [TBL] [Abstract][Full Text] [Related]
8. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. Le DV; Montgomery J; Kirkby KC; Scanlan J J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855 [TBL] [Abstract][Full Text] [Related]
9. Using natural language processing to analyze unstructured patient-reported outcomes data derived from electronic health records for cancer populations: a systematic review. Sim JA; Huang X; Horan MR; Baker JN; Huang IC Expert Rev Pharmacoecon Outcomes Res; 2024 Apr; 24(4):467-475. PubMed ID: 38383308 [TBL] [Abstract][Full Text] [Related]
10. Transformers for extracting breast cancer information from Spanish clinical narratives. Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566 [TBL] [Abstract][Full Text] [Related]
11. General Symptom Extraction from VA Electronic Medical Notes. Divita G; Luo G; Tran LT; Workman TE; Gundlapalli AV; Samore MH Stud Health Technol Inform; 2017; 245():356-360. PubMed ID: 29295115 [TBL] [Abstract][Full Text] [Related]
12. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
13. Automated disambiguation of acronyms and abbreviations in clinical texts: window and training size considerations. Moon S; Pakhomov S; Melton GB AMIA Annu Symp Proc; 2012; 2012():1310-9. PubMed ID: 23304410 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. Weegar R; Pérez A; Casillas A; Oronoz M BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900 [TBL] [Abstract][Full Text] [Related]
15. Inventory of tools for Dutch clinical language processing. Cornet R; Van Eldik A; De Keizer N Stud Health Technol Inform; 2012; 180():245-9. PubMed ID: 22874189 [TBL] [Abstract][Full Text] [Related]
16. Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes. Jonker RAA; Almeida T; Antunes R; Almeida JR; Matos S Database (Oxford); 2024 Jul; 2024():. PubMed ID: 39083461 [TBL] [Abstract][Full Text] [Related]
17. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
18. Processing of Short-Form Content in Clinical Narratives: Systematic Scoping Review. Kugic A; Martin I; Modersohn L; Pallaoro P; Kreuzthaler M; Schulz S; Boeker M J Med Internet Res; 2024 Sep; 26():e57852. PubMed ID: 39325515 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of clinical named entity recognition methods for Serbian electronic health records. Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828 [TBL] [Abstract][Full Text] [Related]
20. Leveraging PubMed to Create a Specialty-Based Sense Inventory for Spanish Acronym Resolution. Pomares-Quimbaya A; López-Úbeda P; Oleynik M; Schulz S Stud Health Technol Inform; 2020 Jun; 270():292-296. PubMed ID: 32570393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]