BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28423922)

  • 41. Quantitative evaluation of HIV and SIV co-receptor use with GHOST(3) cell assay.
    Vödrös D; Fenyö EM
    Methods Mol Biol; 2005; 304():333-42. PubMed ID: 16061987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epigenetic regulation in human melanoma: past and future.
    Sarkar D; Leung EY; Baguley BC; Finlay GJ; Askarian-Amiri ME
    Epigenetics; 2015; 10(2):103-21. PubMed ID: 25587943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. X chromosome-wide analysis identifies DNA methylation sites influenced by cigarette smoking.
    Klebaner D; Huang Y; Hui Q; Taylor JY; Goldberg J; Vaccarino V; Sun YV
    Clin Epigenetics; 2016; 8():20. PubMed ID: 26913089
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methylation of
    Andersen AM; Lei MK; Philibert RA; Beach SRH
    Front Genet; 2018; 9():622. PubMed ID: 30619455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and sequencing of cynomolgus macaque CCR3, GPR15, and STRL33: potential coreceptors for HIV type 1, HIV type 2, and SIV.
    Wade-Evans AM; Russell J; Jenkins A; Javan C
    AIDS Res Hum Retroviruses; 2001 Mar; 17(4):371-5. PubMed ID: 11242524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Epigenetics of schizophrenia: a review].
    Rivollier F; Lotersztajn L; Chaumette B; Krebs MO; Kebir O
    Encephale; 2014 Oct; 40(5):380-6. PubMed ID: 25127897
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of Smoking-Associated Transcriptome Aberration in Blood with Machine Learning Methods.
    Huang F; Ma Q; Ren J; Li J; Wang F; Huang T; Cai YD
    Biomed Res Int; 2023; 2023():5333361. PubMed ID: 36644165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies.
    Gao X; Jia M; Zhang Y; Breitling LP; Brenner H
    Clin Epigenetics; 2015; 7():113. PubMed ID: 26478754
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation.
    Guida F; Sandanger TM; Castagné R; Campanella G; Polidoro S; Palli D; Krogh V; Tumino R; Sacerdote C; Panico S; Severi G; Kyrtopoulos SA; Georgiadis P; Vermeulen RC; Lund E; Vineis P; Chadeau-Hyam M
    Hum Mol Genet; 2015 Apr; 24(8):2349-59. PubMed ID: 25556184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene methylation in gastric cancer.
    Qu Y; Dang S; Hou P
    Clin Chim Acta; 2013 Sep; 424():53-65. PubMed ID: 23669186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequences and predicted structures of chimpanzee STRL33 (Bonzo) and gpr15 (BOB).
    Brussel A; Prétet JL; Girard M; Butor C
    AIDS Res Hum Retroviruses; 1999 Sep; 15(14):1315-9. PubMed ID: 10505680
    [No Abstract]   [Full Text] [Related]  

  • 52. The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers.
    Oka D; Yamashita S; Tomioka T; Nakanishi Y; Kato H; Kaminishi M; Ushijima T
    Cancer; 2009 Aug; 115(15):3412-26. PubMed ID: 19472401
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adhesion G Protein-Coupled Receptors: From In Vitro Pharmacology to In Vivo Mechanisms.
    Monk KR; Hamann J; Langenhan T; Nijmeijer S; Schöneberg T; Liebscher I
    Mol Pharmacol; 2015 Sep; 88(3):617-23. PubMed ID: 25956432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.
    Martin AL; Steurer MA; Aronstam RS
    PLoS One; 2015; 10(9):e0138463. PubMed ID: 26384023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response.
    Barros SP; Offenbacher S
    Periodontol 2000; 2014 Feb; 64(1):95-110. PubMed ID: 24320958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity.
    Remely M; Aumueller E; Merold C; Dworzak S; Hippe B; Zanner J; Pointner A; Brath H; Haslberger AG
    Gene; 2014 Mar; 537(1):85-92. PubMed ID: 24325907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiovascular epigenetics: from DNA methylation to microRNAs.
    Udali S; Guarini P; Moruzzi S; Choi SW; Friso S
    Mol Aspects Med; 2013; 34(4):883-901. PubMed ID: 22981780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epigenetics in acute kidney injury.
    Tang J; Zhuang S
    Curr Opin Nephrol Hypertens; 2015 Jul; 24(4):351-8. PubMed ID: 26050122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Epigenetics in rheumatoid arthritis.
    Klein K; Gay S
    Curr Opin Rheumatol; 2015 Jan; 27(1):76-82. PubMed ID: 25415526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Epigenetics and Nutrition: maternal nutrition impacts on placental development and health of offspring].
    Panchenko PE; Lemaire M; Fneich S; Voisin S; Jouin M; Junien C; Gabory A
    Biol Aujourdhui; 2015; 209(2):175-87. PubMed ID: 26514387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.