These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28423947)
1. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST Crit Rev Biotechnol; 2017 Dec; 37(8):990-1005. PubMed ID: 28423947 [TBL] [Abstract][Full Text] [Related]
2. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production. Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232 [TBL] [Abstract][Full Text] [Related]
3. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Maina S; Prabhu AA; Vivek N; Vlysidis A; Koutinas A; Kumar V Biotechnol Adv; 2022; 54():107783. PubMed ID: 34098005 [TBL] [Abstract][Full Text] [Related]
4. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. Liang K; Shen CR J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1605-1612. PubMed ID: 29116429 [TBL] [Abstract][Full Text] [Related]
5. Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol. Radoš D; Turner DL; Catarino T; Hoffart E; Neves AR; Eikmanns BJ; Blombach B; Santos H Appl Microbiol Biotechnol; 2016 Dec; 100(24):10573-10583. PubMed ID: 27687994 [TBL] [Abstract][Full Text] [Related]
6. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Zhang X; Han R; Bao T; Zhao X; Li X; Zhu M; Yang T; Xu M; Shao M; Zhao Y; Rao Z Microb Cell Fact; 2019 Aug; 18(1):128. PubMed ID: 31387595 [TBL] [Abstract][Full Text] [Related]
7. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Deshmukh AN; Nipanikar-Gokhale P; Jain R Appl Biochem Biotechnol; 2016 May; 179(2):321-31. PubMed ID: 26825987 [TBL] [Abstract][Full Text] [Related]
8. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST PLoS One; 2013; 8(10):e76149. PubMed ID: 24098433 [TBL] [Abstract][Full Text] [Related]
9. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331 [TBL] [Abstract][Full Text] [Related]
10. Recent advances on production of 2, 3-butanediol using engineered microbes. Yang Z; Zhang Z Biotechnol Adv; 2019; 37(4):569-578. PubMed ID: 29608949 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase. Li Y; Zhao X; Yao M; Yang W; Han Y; Liu L; Zhang J; Liu J Microb Cell Fact; 2023 Aug; 22(1):165. PubMed ID: 37644496 [TBL] [Abstract][Full Text] [Related]
12. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525 [TBL] [Abstract][Full Text] [Related]
13. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Liang K; Shen CR Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827 [TBL] [Abstract][Full Text] [Related]
14. Investigation of relationship between 2,3-butanediol toxicity and production during growth of Paenibacillus polymyxa. Okonkwo CC; Ujor V; Ezeji TC N Biotechnol; 2017 Jan; 34():23-31. PubMed ID: 27765680 [TBL] [Abstract][Full Text] [Related]
15. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation. Meng W; Xiao D; Wang R World J Microbiol Biotechnol; 2016 Mar; 32(3):46. PubMed ID: 26873557 [TBL] [Abstract][Full Text] [Related]
16. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Tan Y; Liu ZY; Liu Z; Li FL Enzyme Microb Technol; 2015 Nov; 79-80():1-7. PubMed ID: 26320708 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine. Meng W; Wang R; Xiao D Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762 [TBL] [Abstract][Full Text] [Related]
20. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. Park JM; Song H; Lee HJ; Seung D J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1057-66. PubMed ID: 23779220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]