These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28424297)

  • 21. Model of low-pass filtering of local field potentials in brain tissue.
    Bédard C; Kröger H; Destexhe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051911. PubMed ID: 16802971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spike sorting of synchronous spikes from local neuron ensembles.
    Franke F; Pröpper R; Alle H; Meier P; Geiger JR; Obermayer K; Munk MH
    J Neurophysiol; 2015 Oct; 114(4):2535-49. PubMed ID: 26289473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model-based analysis of cortical recording with silicon microelectrodes.
    Moffitt MA; McIntyre CC
    Clin Neurophysiol; 2005 Sep; 116(9):2240-50. PubMed ID: 16055377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level.
    Miceli S; Ness TV; Einevoll GT; Schubert D
    eNeuro; 2017; 4(1):. PubMed ID: 28197543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localising and classifying neurons from high density MEA recordings.
    Delgado Ruz I; Schultz SR
    J Neurosci Methods; 2014 Aug; 233():115-28. PubMed ID: 24954540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor.
    Schoen I; Fromherz P
    Biophys J; 2007 Feb; 92(3):1096-111. PubMed ID: 17098803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations.
    Bar-Gad I; Ritov Y; Vaadia E; Bergman H
    J Neurosci Methods; 2001 May; 107(1-2):1-13. PubMed ID: 11389936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1580-90. PubMed ID: 12549740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; van Hoof C; Ruther P; Aarts A; Horváth D; Ulbert I
    Biosens Bioelectron; 2018 May; 106():86-92. PubMed ID: 29414094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs.
    Puil E; Gimbarzevsky B; Miura RM
    J Neurophysiol; 1986 May; 55(5):995-1016. PubMed ID: 3711977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage-clamp analysis of neurons within deep layers of the brain.
    Richter DW; Pierrefiche O; Lalley PM; Polder HR
    J Neurosci Methods; 1996 Aug; 67(2):121-3. PubMed ID: 8872877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model-based source localization of extracellular action potentials.
    Somogyvári Z; Zalányi L; Ulbert I; Erdi P
    J Neurosci Methods; 2005 Sep; 147(2):126-37. PubMed ID: 15913782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals.
    Bedard C; Gomes JM; Bal T; Destexhe A
    J Integr Neurosci; 2017; 16(1):3-18. PubMed ID: 28891497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs).
    Angle MR; Schaefer AT
    PLoS One; 2012; 7(8):e43194. PubMed ID: 22905231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An optimization-based study of equivalent circuit models for representing recordings at the neuron-electrode interface.
    Thakore V; Molnar P; Hickman JJ
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2338-47. PubMed ID: 22695342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.