These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 28424469)
1. Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films. Gao Y; Sim K; Yan X; Jiang J; Xie J; Yu C Sci Rep; 2017 Apr; 7(1):947. PubMed ID: 28424469 [TBL] [Abstract][Full Text] [Related]
2. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
3. Recent trends in electrospinning of polymer nanofibers and their applications in ultra thin layer chromatography. Moheman A; Alam MS; Mohammad A Adv Colloid Interface Sci; 2016 Mar; 229():1-24. PubMed ID: 26792019 [TBL] [Abstract][Full Text] [Related]
4. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Baker SR; Banerjee S; Bonin K; Guthold M Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():203-212. PubMed ID: 26652365 [TBL] [Abstract][Full Text] [Related]
5. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
6. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726 [TBL] [Abstract][Full Text] [Related]
8. Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics. Chen L; Yu H; Dirican M; Fang D; Tian Y; Yan C; Xie J; Jia D; Liu H; Wang J; Tang F; Zhang X; Tao J Macromol Rapid Commun; 2020 Oct; 41(19):e2000292. PubMed ID: 32833274 [TBL] [Abstract][Full Text] [Related]
9. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
10. Thermally Driven Resistive Switching in Solution-Processable Thin Films of Coordination Polymers. Rana S; Prasoon A; Jha PK; Prathamshetti A; Ballav N J Phys Chem Lett; 2017 Oct; 8(20):5008-5014. PubMed ID: 28945097 [TBL] [Abstract][Full Text] [Related]
11. Strain-Insensitive Outdoor Wearable Electronics by Thermally Robust Nanofibrous Radiative Cooler. Jung Y; Kim M; Jeong S; Hong S; Ko SH ACS Nano; 2024 Jan; 18(3):2312-2324. PubMed ID: 38190550 [TBL] [Abstract][Full Text] [Related]
12. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860 [TBL] [Abstract][Full Text] [Related]
13. Electrospun nerve guide scaffold of poly(ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. Mohamadi F; Ebrahimi-Barough S; Reza Nourani M; Ali Derakhshan M; Goodarzi V; Sadegh Nazockdast M; Farokhi M; Tajerian R; Faridi Majidi R; Ai J J Biomed Mater Res A; 2017 Jul; 105(7):1960-1972. PubMed ID: 28324629 [TBL] [Abstract][Full Text] [Related]
14. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors. Wang J; Yao HB; He D; Zhang CL; Yu SH ACS Appl Mater Interfaces; 2012 Apr; 4(4):1963-71. PubMed ID: 22409429 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746 [TBL] [Abstract][Full Text] [Related]
16. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Fang H; Zhao J; Yu KJ; Song E; Farimani AB; Chiang CH; Jin X; Xue Y; Xu D; Du W; Seo KJ; Zhong Y; Yang Z; Won SM; Fang G; Choi SW; Chaudhuri S; Huang Y; Alam MA; Viventi J; Aluru NR; Rogers JA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11682-11687. PubMed ID: 27791052 [TBL] [Abstract][Full Text] [Related]
17. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. Li WJ; Danielson KG; Alexander PG; Tuan RS J Biomed Mater Res A; 2003 Dec; 67(4):1105-14. PubMed ID: 14624495 [TBL] [Abstract][Full Text] [Related]
18. Coaxially electrospun micro/nanofibrous poly(epsilon-caprolactone)/eggshell-protein scaffold. Kim GH; Min T; Park SA; Kim WD Bioinspir Biomim; 2008 Mar; 3():016006. PubMed ID: 18364565 [TBL] [Abstract][Full Text] [Related]
19. Robust superhydrophobic mats based on electrospun crystalline nanofibers combined with a silane precursor. Park SH; Lee SM; Lim HS; Han JT; Lee DR; Shin HS; Jeong Y; Kim J; Cho JH ACS Appl Mater Interfaces; 2010 Mar; 2(3):658-62. PubMed ID: 20356265 [TBL] [Abstract][Full Text] [Related]
20. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties. Ramazani S; Karimi M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():325-34. PubMed ID: 26249597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]