These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28424475)

  • 1. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment.
    Ma D; Zhao Y; Zeng L
    Sci Rep; 2017 Apr; 7(1):926. PubMed ID: 28424475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate measurement and adjustment method for interference fringe direction in a scanning beam interference lithography system.
    Li Y; Jiang S; Chen X; Liu Z; Wang W; Song Y; Bayanheshig
    Opt Express; 2023 Aug; 31(17):28145-28160. PubMed ID: 37710876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active control technology of a diffraction grating wavefront by scanning beam interference lithography.
    Liu Z; Yang H; Li Y; Jiang S; Wang W; Song Y; Bayanheshig ; Li W
    Opt Express; 2021 Nov; 29(23):37066-37074. PubMed ID: 34808785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving grating duty cycle uniformity: amplitude-splitting flat-top beam laser interference lithography.
    Xue D; Deng X; Dun X; Wang J; Wang Z; Cheng X
    Appl Opt; 2024 Mar; 63(8):2065-2069. PubMed ID: 38568648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems.
    Clausnitzer T; Limpert J; Zöllner K; Zellmer H; Fuchs HJ; Kley EB; Tünnermann A; Jupé M; Ristau D
    Appl Opt; 2003 Dec; 42(34):6934-8. PubMed ID: 14661807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of optical mosaic gratings: a self-referencing alignment method.
    Shi L; Zeng L
    Opt Express; 2011 May; 19(10):8985-93. PubMed ID: 21643151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision fringe period metrology using an LSQ sine fit algorithm.
    Xiang X; Li M; Wei C; Zhou C
    Appl Opt; 2018 Jun; 57(17):4777-4784. PubMed ID: 30118093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achromatic holographic configuration for 100-nm-period lithography.
    Yen A; Anderson EH; Ghanbari RA; Schattenburg ML; Smith HI
    Appl Opt; 1992 Aug; 31(22):4540-5. PubMed ID: 20725456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple spatially resolved period measurement of chirped pulse compression gratings.
    Bienert F; Röcker C; Graf T; Ahmed MA
    Opt Express; 2023 Jun; 31(12):19392-19403. PubMed ID: 37381355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of high-resolution large-area patterns using EUV interference lithography in a scan-exposure mode.
    Wang L; Solak HH; Ekinci Y
    Nanotechnology; 2012 Aug; 23(30):305303. PubMed ID: 22781087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system.
    Chen X; Jiang S; Li Y; Jiang Y; Wang W; Bayanheshig
    Opt Express; 2022 Oct; 30(22):40842-40853. PubMed ID: 36299010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range in situ picometer measurement of the period of an interference field.
    Xiang X; Jia W; Xiang C; Li M; Bu F; Zhu S; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(11):2929-2935. PubMed ID: 31044895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moiré alignment algorithm for an aberration-corrected holographic grating exposure system and error analysis.
    Zhao X; Bayanheshig ; Li W; Yanxiu J; Song Y; Li X; Jiang S; Wu N
    Appl Opt; 2016 Nov; 55(31):8683-8689. PubMed ID: 27828949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step fabrication of hierarchical multiscale surface relief gratings by holographic lithography of azobenzene polymer.
    Kim KH; Jeong YC
    Opt Express; 2018 Mar; 26(5):5711-5723. PubMed ID: 29529773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization system for holographic recording of volume Bragg gratings using a corner cube retroreflector.
    Ott DB; Divliansky IB; Segall MA; Glebov LB
    Appl Opt; 2014 Feb; 53(6):1039-46. PubMed ID: 24663299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of low-stray-light gratings by broad-beam scanning exposure in the direction perpendicular to the grating grooves.
    Ma D; Zeng L
    Opt Lett; 2015 Apr; 40(7):1346-9. PubMed ID: 25831329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system.
    Habara H; Xu G; Jitsuno T; Kodama R; Suzuki K; Sawai K; Kondo K; Miyanaga N; Tanaka KA; Mima K; Rushford MC; Britten JA; Barty CP
    Opt Lett; 2010 Jun; 35(11):1783-5. PubMed ID: 20517415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted iterative algorithm for beam alignment in scanning beam interference lithography.
    Song Y; Wang W; Jiang S; Bayanheshig ; Zhang N
    Appl Opt; 2017 Nov; 56(31):8669-8675. PubMed ID: 29091682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.