These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28424566)

  • 1. Influence of organic molecules on the aggregation of TiO
    Danielsson K; Gallego-Urrea JA; Hassellov M; Gustafsson S; Jonsson CM
    J Nanopart Res; 2017; 19(4):133. PubMed ID: 28424566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III).
    Li S; Sun W
    J Hazard Mater; 2011 Dec; 197():70-9. PubMed ID: 22001572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.
    Zhang W; Rattanaudompol US; Li H; Bouchard D
    Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
    Domingos RF; Tufenkji N; Wilkinson KI
    Environ Sci Technol; 2009 Mar; 43(5):1282-6. PubMed ID: 19350891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpreting the effects of natural organic matter on antimicrobial activity of Ag
    Liu Y; Yang T; Wang L; Huang Z; Li J; Cheng H; Jiang J; Pang S; Qi J; Ma J
    Water Res; 2018 Nov; 145():12-20. PubMed ID: 30118974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles.
    Afshinnia K; Marrone B; Baalousha M
    Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.
    Nason JA; McDowell SA; Callahan TW
    J Environ Monit; 2012 Jul; 14(7):1885-92. PubMed ID: 22495395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Adsorption of Suwannee River Humic Acid on TiO
    Jayalath S; Wu H; Larsen SC; Grassian VH
    Langmuir; 2018 Mar; 34(9):3136-3145. PubMed ID: 29384683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zboƙil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of extracellular polymeric substances on the aggregation kinetics of TiO
    Lin D; Drew Story S; Walker SL; Huang Q; Cai P
    Water Res; 2016 Nov; 104():381-388. PubMed ID: 27576157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.
    Mohd Omar F; Abdul Aziz H; Stoll S
    Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate.
    Wan B; Yan Y; Liu F; Tan W; He J; Feng X
    Sci Total Environ; 2016 Feb; 544():134-42. PubMed ID: 26657256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of particle size and charge capacity in TiO2 nanoparticle-lipid interactions.
    Vakurov A; Drummond-Brydson R; Ugwumsinachi O; Nelson A
    J Colloid Interface Sci; 2016 Jul; 473():75-83. PubMed ID: 27054769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles.
    Bae S; Hwang YS; Lee YJ; Lee SK
    Environ Health Toxicol; 2013; 28():e2013006. PubMed ID: 23700566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions.
    Fries E; Crouzet C; Michel C; Togola A
    Sci Total Environ; 2016 Sep; 563-564():971-6. PubMed ID: 26765511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter.
    Baalousha M
    Sci Total Environ; 2009 Mar; 407(6):2093-101. PubMed ID: 19059631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.