These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28424855)

  • 1. Analysis of multiple soybean phytonutrients by near-infrared reflectance spectroscopy.
    Zhang G; Li P; Zhang W; Zhao J
    Anal Bioanal Chem; 2017 May; 409(14):3515-3525. PubMed ID: 28424855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rapid determination of fatty acids in soybeans [Glycine max (L.) Merr.] by FT-near-infrared reflectance spectroscopy].
    Sun JM; Han FX; Yan SR; Yang H; Tetsuo S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1290-5. PubMed ID: 18800707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid profiling of soybean cotyledons by near-infrared spectroscopy.
    Roberts CA; Ren C; Beuselinck PR; Benedict HR; Bilyeu K
    Appl Spectrosc; 2006 Nov; 60(11):1328-33. PubMed ID: 17132452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy.
    Kim KS; Park SH; Choung MG
    J Agric Food Chem; 2007 Mar; 55(5):1679-85. PubMed ID: 17288449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Measuring fatty acid concentration in maize grain by near-infrared reflectance spectroscopy].
    Yang XH; Guo YQ; Fu Y; Hu JY; Chai YC; Zhang YR; Li JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):106-9. PubMed ID: 19385216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of near-infrared spectroscopy for the rapid evaluation of soybean [Glycine max (L.) Merri.] water soluble protein content.
    Xu R; Hu W; Zhou Y; Zhang X; Xu S; Guo Q; Qi P; Chen L; Yang X; Zhang F; Liu L; Qiu L; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117400. PubMed ID: 31437763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.
    Schulmerich MV; Walsh MJ; Gelber MK; Kong R; Kole MR; Harrison SK; McKinney J; Thompson D; Kull LS; Bhargava R
    J Agric Food Chem; 2012 Aug; 60(33):8097-102. PubMed ID: 22746340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative NIR determination of isoflavone and saponin content of ground soybeans.
    Berhow MA; Singh M; Bowman MJ; Price NPJ; Vaughn SF; Liu SX
    Food Chem; 2020 Jul; 317():126373. PubMed ID: 32087514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Situ Screening of Soybean Quality with a Novel Handheld Near-Infrared Sensor.
    Aykas DP; Ball C; Sia A; Zhu K; Shotts ML; Schmenk A; Rodriguez-Saona L
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].
    Song T; Zhang FP; Liu YM; Wu ZW; Suo YR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Aug; 32(8):2100-4. PubMed ID: 23156760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.
    Hacisalihoglu G; Gustin JL; Louisma J; Armstrong P; Peter GF; Walker AR; Settles AM
    J Agric Food Chem; 2016 Feb; 64(5):1079-86. PubMed ID: 26771201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of saponins in Pien Tze Huang by near infrared spectroscopy].
    Chen QL
    Zhongguo Zhong Yao Za Zhi; 2019 Apr; 44(8):1596-1600. PubMed ID: 31090323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Nondestructive analysis of protein and fat in whole-kernel soybean by NIR].
    Li N; Min SG; Qin FL; Zhang MX; Ye SF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):45-9. PubMed ID: 15768973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of moisture, oil, and fatty acid composition of olives by near-infrared spectroscopy: development and validation calibration models.
    Saha U; Jackson D
    J Sci Food Agric; 2018 Mar; 98(5):1821-1831. PubMed ID: 28873227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of inorganic phosphorus in soybeans with near-infrared spectroscopy.
    Delwiche SR; Pordesimo LO; Scaboo AM; Pantalone VR
    J Agric Food Chem; 2006 Sep; 54(19):6951-6. PubMed ID: 16968047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy.
    Akkaya MR
    J Food Sci Technol; 2018 Jun; 55(6):2318-2325. PubMed ID: 29892132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared spectroscopy (NIRS) reflectance technology for the determination of tocopherols in alfalfa.
    González-Martín I; Hernández-Hierro JM; Bustamante-Rangel M; Barros-Ferreiro N
    Anal Bioanal Chem; 2006 Nov; 386(5):1553-8. PubMed ID: 17019583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of diffuse reflectance fourier transform mid-infrared and near-infrared spectroscopy with grating-based near-infrared for the determination of fatty acids in forages.
    Calderon FJ; Reeves JB; Foster JG; Clapham WM; Fedders JM; Vigil MF; Henry WB
    J Agric Food Chem; 2007 Oct; 55(21):8302-9. PubMed ID: 17892260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Recent progress in NIR spectroscopy technology and its application to the field of forestry].
    Gong YM; Zhang W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1544-8. PubMed ID: 18844157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy.
    Luna AS; da Silva AP; Pinho JS; Ferré J; Boqué R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():115-9. PubMed ID: 22502875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.