BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 28424950)

  • 1. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric.
    Bröde P; Fiala D; Lemke B; Kjellstrom T
    Int J Biometeorol; 2018 Mar; 62(3):331-345. PubMed ID: 28424950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India.
    Lundgren K; Kuklane K; Venugopal V
    Glob Health Action; 2014; 7():25283. PubMed ID: 25373413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of Universal Thermal Climate Index (UTCI) in occupational heat stress assessment: a case study in brick industries.
    Vatani J; Golbabaei F; Dehghan SF; Yousefi A
    Ind Health; 2016; 54(1):14-9. PubMed ID: 26320731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines.
    Nassiri P; Monazzam MR; Golbabaei F; Dehghan SF; Rafieepour A; Mortezapour AR; Asghari M
    Ind Health; 2017 Oct; 55(5):437-443. PubMed ID: 28804096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actual and simulated weather data to evaluate wet bulb globe temperature and heat index as alerts for occupational heat-related illness.
    Morris CE; Gonzales RG; Hodgson MJ; Tustin AW
    J Occup Environ Hyg; 2019 Jan; 16(1):54-65. PubMed ID: 30285564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Occupational Exposure Limits for Heat Stress in Outdoor Workers - United States, 2011-2016.
    Tustin AW; Lamson GE; Jacklitsch BL; Thomas RJ; Arbury SB; Cannon DL; Gonzales RG; Hodgson MJ
    MMWR Morb Mortal Wkly Rep; 2018 Jul; 67(26):733-737. PubMed ID: 29975679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occupational heat stress assessment and protective strategies in the context of climate change.
    Gao C; Kuklane K; Östergren PO; Kjellstrom T
    Int J Biometeorol; 2018 Mar; 62(3):359-371. PubMed ID: 28444505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat exposure study in the workplace in a glass manufacturing unit in India.
    Srivastava A; Kumar R; Joseph E; Kumar A
    Ann Occup Hyg; 2000 Sep; 44(6):449-53. PubMed ID: 10963709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing efficacy of different climate indices for predicting labor loss, body temperature, and thermal perception in a wide variety of warm and hot climates.
    Havenith G; Smallcombe JW; Hodder S; Jay O; Foster J
    J Appl Physiol (1985); 2024 Jun; ():. PubMed ID: 38867664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Workplace heat exposure, health protection, and economic impacts: A case study in Canada.
    Vanos J; Vecellio DJ; Kjellstrom T
    Am J Ind Med; 2019 Dec; 62(12):1024-1037. PubMed ID: 30912193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS.
    Kampmann B; Bröde P; Fiala D
    Int J Biometeorol; 2012 May; 56(3):505-13. PubMed ID: 21336921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Heat Stress and Maximum Acceptable Work Time Based on Physiological and Environmental Response in Hot-Dry Climate: A Case Study in Traditional Bakers.
    Afshari D; Moradi S; Ahmadi Angali K; Shirali GA
    Int J Occup Environ Med; 2019 Oct; 10(4):194-202. PubMed ID: 31586384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occupational Heat Stress Profiles in Selected Workplaces in India.
    Venugopal V; Chinnadurai JS; Lucas RA; Kjellstrom T
    Int J Environ Res Public Health; 2015 Dec; 13(1):. PubMed ID: 26729144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of thermal environments: working conditions in the portuguese glass industry.
    Oliveira AVM; Gaspar AR; Raimundo AM; Quintela DA
    Ind Health; 2018 Feb; 56(1):62-77. PubMed ID: 28824045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Evaluation of Portable Wet Bulb Globe Temperature Monitor Accuracy.
    Cooper E; Grundstein A; Rosen A; Miles J; Ko J; Curry P
    J Athl Train; 2017 Dec; 52(12):1161-1167. PubMed ID: 29154695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of occupational exposure to heat stress and solar ultraviolet radiation among groundskeepers in an eastern North Carolina university setting.
    Beck N; Balanay JAG; Johnson T
    J Occup Environ Hyg; 2018 Feb; 15(2):105-116. PubMed ID: 29090983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis.
    Flouris AD; Dinas PC; Ioannou LG; Nybo L; Havenith G; Kenny GP; Kjellstrom T
    Lancet Planet Health; 2018 Dec; 2(12):e521-e531. PubMed ID: 30526938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Field Evaluation of Construction Workers' Activity, Hydration Status, and Heat Strain in the Extreme Summer Heat of Saudi Arabia.
    Al-Bouwarthan M; Quinn MM; Kriebel D; Wegman DH
    Ann Work Expo Health; 2020 Jun; 64(5):522-535. PubMed ID: 32219304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate change-related heat stress on labor productivity in South Korea.
    Lee SW; Lee K; Lim B
    Int J Biometeorol; 2018 Dec; 62(12):2119-2129. PubMed ID: 30244322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating workplace WBGT from meteorological data: a tool for climate change assessment.
    Lemke B; Kjellstrom T
    Ind Health; 2012; 50(4):267-78. PubMed ID: 22673363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.