BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28425030)

  • 1. Hand-eye calibration for surgical cameras: a Procrustean Perspective-n-Point solution.
    Morgan I; Jayarathne U; Rankin A; Peters TM; Chen ECS
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1141-1149. PubMed ID: 28425030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hand-eye calibration using a target registration error model.
    Chen ECS; Morgan I; Jayarathne U; Ma B; Peters TM
    Healthc Technol Lett; 2017 Oct; 4(5):157-162. PubMed ID: 29184657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision-based hand-eye calibration for robot-assisted minimally invasive surgery.
    Sun Y; Pan B; Guo Y; Fu Y; Niu G
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2061-2069. PubMed ID: 32808149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact-less stylus for surgical navigation: registration without digitization.
    Chen ECS; Ma B; Peters TM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1231-1241. PubMed ID: 28386757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjoint Transformation Algorithm for Hand-Eye Calibration with Applications in Robotic Assisted Surgery.
    Pachtrachai K; Vasconcelos F; Chadebecq F; Allan M; Hailes S; Pawar V; Stoyanov D
    Ann Biomed Eng; 2018 Oct; 46(10):1606-1620. PubMed ID: 30051249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction.
    Mersmann S; Seitel A; Erz M; Jähne B; Nickel F; Mieth M; Mehrabi A; Maier-Hein L
    Med Phys; 2013 Aug; 40(8):082701. PubMed ID: 23927355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery.
    Barratt DC; Penney GP; Chan CS; Slomczykowski M; Carter TJ; Edwards PJ; Hawkes DJ
    IEEE Trans Med Imaging; 2006 Mar; 25(3):312-23. PubMed ID: 16524087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marker-less real-time intra-operative camera and hand-eye calibration procedure for surgical augmented reality.
    Kalia M; Mathur P; Navab N; Salcudean SE
    Healthc Technol Lett; 2019 Dec; 6(6):255-260. PubMed ID: 32038867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hand-eye calibration for rigid laparoscopes using an invariant point.
    Thompson S; Stoyanov D; Schneider C; Gurusamy K; Ourselin S; Davidson B; Hawkes D; Clarkson MJ
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1071-80. PubMed ID: 26995597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Camera Calibration for Optical Surgical Navigation.
    Cai K; Yang R; Lin Q; Liu S; Chen H; Ou S; Huang W; Zhou J
    J Med Syst; 2016 Mar; 40(3):67. PubMed ID: 26728393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computationally efficient method for hand-eye calibration.
    Zhang Z; Zhang L; Yang GZ
    Int J Comput Assist Radiol Surg; 2017 Oct; 12(10):1775-1787. PubMed ID: 28726116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-of-flight-assisted Kinect camera-based people detection for intuitive human robot cooperation in the surgical operating room.
    Beyl T; Nicolai P; Comparetti MD; Raczkowsky J; De Momi E; Wörn H
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1329-45. PubMed ID: 26567093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light fields for minimal invasive surgery using an endoscope positioning robot.
    Vogt F; Krüger S; Schmidt J; Paulus D; Niemann H; Hohenberger W; Schick CH
    Methods Inf Med; 2004; 43(4):403-8. PubMed ID: 15472754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust and Accurate Hand-Eye Calibration Method Based on Schur Matric Decomposition.
    Liu J; Wu J; Li AX
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camera calibration with one-dimensional objects.
    Zhang Z
    IEEE Trans Pattern Anal Mach Intell; 2004 Jul; 26(7):892-9. PubMed ID: 18579947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.
    Pycinski B; Czajkowska J; Badura P; Juszczyk J; Pietka E
    PLoS One; 2016; 11(7):e0159493. PubMed ID: 27434396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.
    Song S; Zhang C; Liu L; Meng MQ
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):241-251. PubMed ID: 28983750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.
    Gao Y; Wang S; Li J; Li A; Liu H; Xing Y
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28471060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-D target-based distributed smart camera network localization.
    Kassebaum J; Bulusu N; Feng WC
    IEEE Trans Image Process; 2010 Oct; 19(10):2530-9. PubMed ID: 20679031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.