These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 28425104)
1. Inactivation kinetics and residual activity of CYP3A4 after treatment with erythromycin. Ishikawa Y; Akiyoshi T; Imaoka A; Ohtani H Biopharm Drug Dispos; 2017 Oct; 38(7):420-425. PubMed ID: 28425104 [TBL] [Abstract][Full Text] [Related]
2. Time-dependent inhibition of CYP3A4-mediated midazolam metabolism by macrolide antibiotics in CYP3A4 genetic variants: Comparison with testosterone metabolism. Akiyoshi T; Naitou R; Imaoka A; Miyazaki M; Guengerich FP; Nakamura K; Yamamoto K; Ohtani H Int J Clin Pharmacol Ther; 2021 Dec; 59(12):745-752. PubMed ID: 34542401 [TBL] [Abstract][Full Text] [Related]
3. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Akiyoshi T; Ito M; Murase S; Miyazaki M; Guengerich FP; Nakamura K; Yamamoto K; Ohtani H Drug Metab Pharmacokinet; 2013; 28(5):411-5. PubMed ID: 23514827 [TBL] [Abstract][Full Text] [Related]
4. Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. Polasek TM; Miners JO Eur J Clin Pharmacol; 2006 Mar; 62(3):203-8. PubMed ID: 16416302 [TBL] [Abstract][Full Text] [Related]
5. Defective activity of recombinant cytochromes P450 3A4.2 and 3A4.16 in oxidation of midazolam, nifedipine, and testosterone. Miyazaki M; Nakamura K; Fujita Y; Guengerich FP; Horiuchi R; Yamamoto K Drug Metab Dispos; 2008 Nov; 36(11):2287-91. PubMed ID: 18669585 [TBL] [Abstract][Full Text] [Related]
6. Risk assessment for drug-drug interaction caused by metabolism-based inhibition of CYP3A using automated in vitro assay systems and its application in the early drug discovery process. Watanabe A; Nakamura K; Okudaira N; Okazaki O; Sudo K Drug Metab Dispos; 2007 Jul; 35(7):1232-8. PubMed ID: 17392390 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous evaluation of substrate-dependent CYP3A inhibition using a CYP3A probe substrates cocktail. Lee E; Shon JC; Liu KH Biopharm Drug Dispos; 2016 Sep; 37(6):366-72. PubMed ID: 27323294 [TBL] [Abstract][Full Text] [Related]
8. Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Galetin A; Clarke SE; Houston JB Drug Metab Dispos; 2003 Sep; 31(9):1108-16. PubMed ID: 12920166 [TBL] [Abstract][Full Text] [Related]
9. Progress curve mechanistic modeling approach for assessing time-dependent inhibition of CYP3A4. Burt HJ; Pertinez H; Säll C; Collins C; Hyland R; Houston JB; Galetin A Drug Metab Dispos; 2012 Sep; 40(9):1658-67. PubMed ID: 22621802 [TBL] [Abstract][Full Text] [Related]
10. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Stresser DM; Blanchard AP; Turner SD; Erve JC; Dandeneau AA; Miller VP; Crespi CL Drug Metab Dispos; 2000 Dec; 28(12):1440-8. PubMed ID: 11095581 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Zhang X; Jones DR; Hall SD Drug Metab Dispos; 2009 Jan; 37(1):150-60. PubMed ID: 18854379 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of CYP3A by erythromycin: in vitro-in vivo correlation in rats. Zhang X; Galinsky RE; Kimura RE; Quinney SK; Jones DR; Hall SD Drug Metab Dispos; 2010 Jan; 38(1):61-72. PubMed ID: 19797607 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Chan TS; Scaringella YS; Raymond K; Taub ME Drug Metab Dispos; 2020 Aug; 48(8):690-697. PubMed ID: 32503882 [TBL] [Abstract][Full Text] [Related]
15. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates. Rougée LRA; Mohutsky MA; Bedwell DW; Ruterbories KJ; Hall SD Drug Metab Dispos; 2017 Sep; 45(9):1008-1018. PubMed ID: 28679672 [TBL] [Abstract][Full Text] [Related]
16. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Foti RS; Rock DA; Wienkers LC; Wahlstrom JL Drug Metab Dispos; 2010 Jun; 38(6):981-7. PubMed ID: 20203109 [TBL] [Abstract][Full Text] [Related]
17. [Modeling of drug-drug interactions between omeprazole and erythromycin with cytochrome P450 3A4 in vitro assay]. Koroleva PI; Kuzikov AV; Masamrekh RA; Filimonov DA; Dmitriev AV; Zaviyalova MG; Rikova SM; Shich EV; Makhova AA; Bulko TV; Gilep AA; Shumyantseva VV Biomed Khim; 2020 May; 66(3):241-249. PubMed ID: 32588830 [TBL] [Abstract][Full Text] [Related]
18. Higher throughput human hepatocyte assays for the evaluation of time-dependent inhibition of CYP3A4. Li AP; Doshi U Drug Metab Lett; 2011 Aug; 5(3):183-91. PubMed ID: 21722087 [TBL] [Abstract][Full Text] [Related]
19. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Rowland Yeo K; Walsky RL; Jamei M; Rostami-Hodjegan A; Tucker GT Eur J Pharm Sci; 2011 Jun; 43(3):160-73. PubMed ID: 21540107 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Screening of Six Protein Kinase Inhibitors for Time-Dependent Inhibition of CYP2C8 and CYP3A4: Possible Implications with regard to Drug-Drug Interactions. Filppula AM; Mustonen TM; Backman JT Basic Clin Pharmacol Toxicol; 2018 Dec; 123(6):739-748. PubMed ID: 29956478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]