These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28425201)
1. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. Bukala J; Kwiatkowski P; Malachowski J Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425201 [TBL] [Abstract][Full Text] [Related]
2. On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests. Geith MA; Swidergal K; Hochholdinger B; Schratzenstaller TG; Wagner M; Holzapfel GA Int J Numer Method Biomed Eng; 2019 Nov; 35(11):e3249. PubMed ID: 31400057 [TBL] [Abstract][Full Text] [Related]
3. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Martin D; Boyle F Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1161-75. PubMed ID: 23696255 [TBL] [Abstract][Full Text] [Related]
4. Finite element methods to analyze helical stent expansion. Paryab N; Cronin DS; Lee-Sullivan P Int J Numer Method Biomed Eng; 2014 Mar; 30(3):339-52. PubMed ID: 24123985 [TBL] [Abstract][Full Text] [Related]
5. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Kiousis DE; Wulff AR; Holzapfel GA Ann Biomed Eng; 2009 Feb; 37(2):315-30. PubMed ID: 19048377 [TBL] [Abstract][Full Text] [Related]
6. Finite element analysis and stent design: Reduction of dogboning. De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746 [TBL] [Abstract][Full Text] [Related]
7. Future Balloon-Expandable Stents: High or Low-Strength Materials? Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964 [TBL] [Abstract][Full Text] [Related]
8. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Wang WQ; Liang DK; Yang DZ; Qi M J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584 [TBL] [Abstract][Full Text] [Related]
10. Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics. De Bock S; Iannaccone F; De Beule M; Van Loo D; Vermassen F; Verhegghe B; Segers P J Biomech; 2013 Sep; 46(14):2477-82. PubMed ID: 23953501 [TBL] [Abstract][Full Text] [Related]
11. Design and evaluation of the crimping of a hooked self-expandable caval valve stent for the treatment of tricuspid regurgitation. Praveen Kumar G; Liang Leo H; Cui F Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):533-546. PubMed ID: 30773049 [TBL] [Abstract][Full Text] [Related]
12. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Martin D; Boyle F Cardiovasc Eng Technol; 2015 Sep; 6(3):314-28. PubMed ID: 26577363 [TBL] [Abstract][Full Text] [Related]
13. Numerical investigations of the mechanical properties of braided vascular stents. Fu W; Xia Q; Yan R; Qiao A Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075 [TBL] [Abstract][Full Text] [Related]
14. Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning. Wiesent L; Schultheiß U; Schmid C; Schratzenstaller T; Nonn A PLoS One; 2019; 14(10):e0224026. PubMed ID: 31626662 [TBL] [Abstract][Full Text] [Related]
15. [Finite element analysis of the expansion behavior of coronary stents]. Wang W; Yang D; Qi M Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721 [TBL] [Abstract][Full Text] [Related]
16. Realistic finite element-based stent design: the impact of balloon folding. De Beule M; Mortier P; Carlier SG; Verhegghe B; Van Impe R; Verdonck P J Biomech; 2008; 41(2):383-9. PubMed ID: 17920068 [TBL] [Abstract][Full Text] [Related]
17. A Computational Framework to Model Degradation of Biocorrodible Metal Stents Using an Implicit Finite Element Solver. Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M Ann Biomed Eng; 2016 Feb; 44(2):382-90. PubMed ID: 26703421 [TBL] [Abstract][Full Text] [Related]
18. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning. Kumar A; Bhatnagar N Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106 [TBL] [Abstract][Full Text] [Related]
19. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements? Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960 [TBL] [Abstract][Full Text] [Related]
20. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium. Cabrera MS; Oomens CW; Baaijens FP J Mech Behav Biomed Mater; 2017 Apr; 68():252-264. PubMed ID: 28219851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]