These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28425201)

  • 21. On the importance of modeling stent procedure for predicting arterial mechanics.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Dec; 134(12):121005. PubMed ID: 23363207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical study of the uniformity of balloon-expandable stent deployment.
    Mortier P; De Beule M; Carlier SG; Van Impe R; Verhegghe B; Verdonck P
    J Biomech Eng; 2008 Apr; 130(2):021018. PubMed ID: 18412505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery.
    Liang DK; Yang DZ; Qi M; Wang WQ
    Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of balloon design, plaque material composition, and balloon sizing on acute post angioplasty outcomes: An implicit finite element analysis.
    Helou B; Bel-Brunon A; Dupont C; Ye W; Silvestro C; Rochette M; Lucas A; Kaladji A; Haigron P
    Int J Numer Method Biomed Eng; 2021 Aug; 37(8):e3499. PubMed ID: 33998779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent.
    Shen X; Zhu H; Jiang J; Deng Y; Ji S
    Cardiovasc Eng Technol; 2019 Mar; 10(1):10-21. PubMed ID: 30673977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method.
    Gervaso F; Capelli C; Petrini L; Lattanzio S; Di Virgilio L; Migliavacca F
    J Biomech; 2008; 41(6):1206-12. PubMed ID: 18374340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the finite element modelling of balloon-expandable stents.
    Ju F; Xia Z; Sasaki K
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):86-95. PubMed ID: 19627774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A finite element simulation method to evaluate the crimpability of curved stents.
    Praveen Kumar G; Louis Commillus A; Cui F
    Med Eng Phys; 2019 Dec; 74():162-165. PubMed ID: 31635945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-expanding stent modelling and radial force accuracy.
    Ghriallais RN; Bruzzi M
    Comput Methods Biomech Biomed Engin; 2014; 17(4):318-33. PubMed ID: 22587464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An analysis of the contact between the stent and the artery using tube hydroforming simulation.
    Araújo R; Guimarães TA; Oliveira SA
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1214-22. PubMed ID: 23813983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Numerical modeling of shape memory alloy vascular stent's self-expandable progress and "optimized grid" of stent].
    Xu Q; Liu Y; Wang B; He J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1101-6. PubMed ID: 19024455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element modeling of a progressively expanding shape memory stent.
    Thériault P; Terriault P; Brailovski V; Gallo R
    J Biomech; 2006; 39(15):2837-44. PubMed ID: 16259989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational study of crimping and expansion of bioresorbable polymeric stents.
    Qiu TY; Song M; Zhao LG
    Mech Time Depend Mater; 2018; 22(2):273-290. PubMed ID: 29962898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Finite element analysis of the mechanical property of the resistance to compressing of the coronary stent].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1008-12. PubMed ID: 17121342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.