BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28425474)

  • 1. Invasion of Ancestral Mammals into Dim-light Environments Inferred from Adaptive Evolution of the Phototransduction Genes.
    Wu Y; Wang H; Hadly EA
    Sci Rep; 2017 Apr; 7():46542. PubMed ID: 28425474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction.
    Maor R; Dayan T; Ferguson-Gow H; Jones KE
    Nat Ecol Evol; 2017 Dec; 1(12):1889-1895. PubMed ID: 29109469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread nocturnality of living birds stemming from their common ancestor.
    Wu Y
    BMC Evol Biol; 2019 Oct; 19(1):189. PubMed ID: 31619159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular origin and evolution of dim-light vision in mammals.
    Bickelmann C; Morrow JM; Du J; Schott RK; van Hazel I; Lim S; Müller J; Chang BS
    Evolution; 2015 Nov; 69(11):2995-3003. PubMed ID: 26536060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking the Origin of Primates by Reconstructing Their Diel Activity Patterns Using Genetics and Morphology.
    Wu Y; Wang H; Wang H; Hadly EA
    Sci Rep; 2017 Sep; 7(1):11837. PubMed ID: 28928374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nocturnal bottleneck and the evolution of mammalian vision.
    Heesy CP; Hall MI
    Brain Behav Evol; 2010; 75(3):195-203. PubMed ID: 20733295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diurnality, nocturnality, and the evolution of primate visual systems.
    Ankel-Simons F; Rasmussen DT
    Am J Phys Anthropol; 2008; Suppl 47():100-17. PubMed ID: 19003895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Data Support an Early Shift to an Intermediate-Light Niche in the Evolution of Mammals.
    Liu Y; Chi H; Li L; Rossiter SJ; Zhang S
    Mol Biol Evol; 2018 May; 35(5):1130-1134. PubMed ID: 29462332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology.
    Schmitz L; Motani R
    Science; 2011 May; 332(6030):705-8. PubMed ID: 21493820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics.
    Heesy CP; Ross CF
    J Hum Evol; 2001 Feb; 40(2):111-49. PubMed ID: 11161957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nocturnality in synapsids predates the origin of mammals by over 100 million years.
    Angielczyk KD; Schmitz L
    Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25186003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diel niche variation in mammals associated with expanded trait space.
    Cox DTC; Gardner AS; Gaston KJ
    Nat Commun; 2021 Mar; 12(1):1753. PubMed ID: 33741946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular ecology and adaptation of visual photopigments in craniates.
    Davies WI; Collin SP; Hunt DM
    Mol Ecol; 2012 Jul; 21(13):3121-58. PubMed ID: 22650357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.
    Emerling CA; Huynh HT; Nguyen MA; Meredith RW; Springer MS
    Proc Biol Sci; 2015 Nov; 282(1819):. PubMed ID: 26582021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraocular phototransduction and circadian timing systems in vertebrates.
    Campbell SS; Murphy PJ; Suhner AG
    Chronobiol Int; 2001 Mar; 18(2):137-72. PubMed ID: 11379659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regressed but Not Gone: Patterns of Vision Gene Loss and Retention in Subterranean Mammals.
    Emerling CA
    Integr Comp Biol; 2018 Sep; 58(3):441-451. PubMed ID: 29697812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic sensitivity and nonlinear interactions influence the system-level evolutionary patterns of phototransduction proteins.
    Invergo BM; Montanucci L; Bertranpetit J
    Proc Biol Sci; 2015 Dec; 282(1820):20152215. PubMed ID: 26631565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments.
    Borges R; Johnson WE; O'Brien SJ; Gomes C; Heesy CP; Antunes A
    BMC Genomics; 2018 Feb; 19(1):121. PubMed ID: 29402215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eyes underground: regression of visual protein networks in subterranean mammals.
    Emerling CA; Springer MS
    Mol Phylogenet Evol; 2014 Sep; 78():260-70. PubMed ID: 24859681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual ecology of Indian carpenter bees I: light intensities and flight activity.
    Somanathan H; Borges RM; Warrant EJ; Kelber A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):97-107. PubMed ID: 18094978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.