These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 28425525)
1. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study. Kanti Si M; Sen A; Ganguly B Phys Chem Chem Phys; 2017 May; 19(18):11474-11484. PubMed ID: 28425525 [TBL] [Abstract][Full Text] [Related]
2. In silico studies toward understanding the interactions of DNA base pairs with protonated linear/cyclic diamines. Sen A; Sahu D; Ganguly B J Phys Chem B; 2013 Aug; 117(34):9840-50. PubMed ID: 23909683 [TBL] [Abstract][Full Text] [Related]
3. New insights into the structures of ligand-quadruplex complexes from molecular dynamics simulations. Hou JQ; Chen SB; Tan JH; Ou TM; Luo HB; Li D; Xu J; Gu LQ; Huang ZS J Phys Chem B; 2010 Nov; 114(46):15301-10. PubMed ID: 21049896 [TBL] [Abstract][Full Text] [Related]
4. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. Vinnarasi S; Radhika R; Vijayakumar S; Shankar R J Biomol Struct Dyn; 2020 Feb; 38(2):317-339. PubMed ID: 30794082 [TBL] [Abstract][Full Text] [Related]
5. Tuning the ring strain effect in acridine derivatives on binding affinity with G-quadruplex-DNA: A computational and experimental study. Si MK; Pramanik SK; Ganguly B Int J Biol Macromol; 2019 Mar; 124():1177-1185. PubMed ID: 30521912 [TBL] [Abstract][Full Text] [Related]
6. Modeling and biological investigations of an unusual behavior of novel synthesized acridine-based polyamine ligands in the binding of double helix and G-quadruplex DNA. Bazzicalupi C; Chioccioli M; Sissi C; Porcù E; Bonaccini C; Pivetta C; Bencini A; Giorgi C; Valtancoli B; Melani F; Gratteri P ChemMedChem; 2010 Dec; 5(12):1995-2005. PubMed ID: 20957717 [TBL] [Abstract][Full Text] [Related]
7. Ligand Selectivity by Inserting GCGC-Tetrads into G-Quadruplex Structures. Cao Y; Yang L; Ding P; Li W; Pei R Chemistry; 2020 Nov; 26(64):14730-14737. PubMed ID: 32839998 [TBL] [Abstract][Full Text] [Related]
8. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple. Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945 [TBL] [Abstract][Full Text] [Related]
9. Novel G-quadruplex stabilizing agents: in-silico approach and dynamics. Kar RK; Suryadevara P; Jana J; Bhunia A; Chatterjee S J Biomol Struct Dyn; 2013 Dec; 31(12):1497-518. PubMed ID: 23244447 [TBL] [Abstract][Full Text] [Related]
10. NMR based structural studies decipher stacking of the alkaloid coralyne to terminal guanines at two different sites in parallel G-quadruplex DNA, [d(TTGGGGT)] Padmapriya K; Barthwal R Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):37-48. PubMed ID: 27838396 [TBL] [Abstract][Full Text] [Related]
11. Structure of a G-quadruplex-ligand complex. Haider SM; Parkinson GN; Neidle S J Mol Biol; 2003 Feb; 326(1):117-25. PubMed ID: 12547195 [TBL] [Abstract][Full Text] [Related]
12. Effects of the central potassium ions on the G-quadruplex and stabilizer binding. Wang Z; Liu JP J Mol Graph Model; 2017 Mar; 72():168-177. PubMed ID: 28092835 [TBL] [Abstract][Full Text] [Related]
13. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Yurenko YP; Novotný J; Sklenář V; Marek R Phys Chem Chem Phys; 2014 Feb; 16(5):2072-84. PubMed ID: 24343126 [TBL] [Abstract][Full Text] [Related]
14. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting. Chen L; Dickerhoff J; Sakai S; Yang D Acc Chem Res; 2022 Sep; 55(18):2628-2646. PubMed ID: 36054116 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the binding of small ligand molecules to a G-quadruplex DNA located in the HIV-1 promoter. Mitrasinovic PM J Biomol Struct Dyn; 2018 Jul; 36(9):2292-2302. PubMed ID: 28728523 [TBL] [Abstract][Full Text] [Related]
16. Designing a New Class of Bases for Nucleic Acid Quadruplexes and Quadruplex-Active Ligands. Bazzi S; Novotný J; Yurenko YP; Marek R Chemistry; 2015 Jun; 21(26):9414-25. PubMed ID: 26032561 [TBL] [Abstract][Full Text] [Related]
17. Charge-dipole interactions in G-quadruplex thrombin-binding aptamer. Kim HW; Rhee YM; Shin SK Phys Chem Chem Phys; 2018 Aug; 20(32):21068-21074. PubMed ID: 30074033 [TBL] [Abstract][Full Text] [Related]
18. Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and π-π stacking. Moghaddam KG; de Vries AH; Marrink SJ; Faraji S Biophys Chem; 2019 Oct; 253():106220. PubMed ID: 31302375 [TBL] [Abstract][Full Text] [Related]
19. Effect of coordinated ions on structure and flexiblity of parallel G-quandruplexes: a molecular dynamics study. Chowdhury S; Bansal M J Biomol Struct Dyn; 2000 Aug; 18(1):11-28. PubMed ID: 11021649 [TBL] [Abstract][Full Text] [Related]
20. Selectivity of small molecule ligands for parallel and anti-parallel DNA G-quadruplex structures. Garner TP; Williams HE; Gluszyk KI; Roe S; Oldham NJ; Stevens MF; Moses JE; Searle MS Org Biomol Chem; 2009 Oct; 7(20):4194-200. PubMed ID: 19795057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]