BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 28425525)

  • 1. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study.
    Kanti Si M; Sen A; Ganguly B
    Phys Chem Chem Phys; 2017 May; 19(18):11474-11484. PubMed ID: 28425525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico studies toward understanding the interactions of DNA base pairs with protonated linear/cyclic diamines.
    Sen A; Sahu D; Ganguly B
    J Phys Chem B; 2013 Aug; 117(34):9840-50. PubMed ID: 23909683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the structures of ligand-quadruplex complexes from molecular dynamics simulations.
    Hou JQ; Chen SB; Tan JH; Ou TM; Luo HB; Li D; Xu J; Gu LQ; Huang ZS
    J Phys Chem B; 2010 Nov; 114(46):15301-10. PubMed ID: 21049896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations.
    Vinnarasi S; Radhika R; Vijayakumar S; Shankar R
    J Biomol Struct Dyn; 2020 Feb; 38(2):317-339. PubMed ID: 30794082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the ring strain effect in acridine derivatives on binding affinity with G-quadruplex-DNA: A computational and experimental study.
    Si MK; Pramanik SK; Ganguly B
    Int J Biol Macromol; 2019 Mar; 124():1177-1185. PubMed ID: 30521912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and biological investigations of an unusual behavior of novel synthesized acridine-based polyamine ligands in the binding of double helix and G-quadruplex DNA.
    Bazzicalupi C; Chioccioli M; Sissi C; Porcù E; Bonaccini C; Pivetta C; Bencini A; Giorgi C; Valtancoli B; Melani F; Gratteri P
    ChemMedChem; 2010 Dec; 5(12):1995-2005. PubMed ID: 20957717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand Selectivity by Inserting GCGC-Tetrads into G-Quadruplex Structures.
    Cao Y; Yang L; Ding P; Li W; Pei R
    Chemistry; 2020 Nov; 26(64):14730-14737. PubMed ID: 32839998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads flanked by a G-(T-T) Triad and a T-T-T triple.
    Kuryavyi V; Majumdar A; Shallop A; Chernichenko N; Skripkin E; Jones R; Patel DJ
    J Mol Biol; 2001 Jun; 310(1):181-94. PubMed ID: 11419945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel G-quadruplex stabilizing agents: in-silico approach and dynamics.
    Kar RK; Suryadevara P; Jana J; Bhunia A; Chatterjee S
    J Biomol Struct Dyn; 2013 Dec; 31(12):1497-518. PubMed ID: 23244447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR based structural studies decipher stacking of the alkaloid coralyne to terminal guanines at two different sites in parallel G-quadruplex DNA, [d(TTGGGGT)]
    Padmapriya K; Barthwal R
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):37-48. PubMed ID: 27838396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a G-quadruplex-ligand complex.
    Haider SM; Parkinson GN; Neidle S
    J Mol Biol; 2003 Feb; 326(1):117-25. PubMed ID: 12547195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the central potassium ions on the G-quadruplex and stabilizer binding.
    Wang Z; Liu JP
    J Mol Graph Model; 2017 Mar; 72():168-177. PubMed ID: 28092835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach.
    Yurenko YP; Novotný J; Sklenář V; Marek R
    Phys Chem Chem Phys; 2014 Feb; 16(5):2072-84. PubMed ID: 24343126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting.
    Chen L; Dickerhoff J; Sakai S; Yang D
    Acc Chem Res; 2022 Sep; 55(18):2628-2646. PubMed ID: 36054116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the binding of small ligand molecules to a G-quadruplex DNA located in the HIV-1 promoter.
    Mitrasinovic PM
    J Biomol Struct Dyn; 2018 Jul; 36(9):2292-2302. PubMed ID: 28728523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing a New Class of Bases for Nucleic Acid Quadruplexes and Quadruplex-Active Ligands.
    Bazzi S; Novotný J; Yurenko YP; Marek R
    Chemistry; 2015 Jun; 21(26):9414-25. PubMed ID: 26032561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-dipole interactions in G-quadruplex thrombin-binding aptamer.
    Kim HW; Rhee YM; Shin SK
    Phys Chem Chem Phys; 2018 Aug; 20(32):21068-21074. PubMed ID: 30074033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and π-π stacking.
    Moghaddam KG; de Vries AH; Marrink SJ; Faraji S
    Biophys Chem; 2019 Oct; 253():106220. PubMed ID: 31302375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of coordinated ions on structure and flexiblity of parallel G-quandruplexes: a molecular dynamics study.
    Chowdhury S; Bansal M
    J Biomol Struct Dyn; 2000 Aug; 18(1):11-28. PubMed ID: 11021649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of small molecule ligands for parallel and anti-parallel DNA G-quadruplex structures.
    Garner TP; Williams HE; Gluszyk KI; Roe S; Oldham NJ; Stevens MF; Moses JE; Searle MS
    Org Biomol Chem; 2009 Oct; 7(20):4194-200. PubMed ID: 19795057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.