These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28425529)

  • 1. Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry.
    Bieker G; Wellmann J; Kolek M; Jalkanen K; Winter M; Bieker P
    Phys Chem Chem Phys; 2017 May; 19(18):11152-11162. PubMed ID: 28425529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-vis Spectroscopic Study.
    Zou Q; Lu YC
    J Phys Chem Lett; 2016 Apr; 7(8):1518-25. PubMed ID: 27050386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2018 Jan; 19(1):75-81. PubMed ID: 29121449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs.
    Ji X; Evers S; Black R; Nazar LF
    Nat Commun; 2011; 2():325. PubMed ID: 21610728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries.
    Zheng D; Qu D; Yang XQ; Lee HS; Qu D
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19923-9. PubMed ID: 26301499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyst and electrolyte synergy in Li-O2 batteries.
    Gittleson FS; Sekol RC; Doubek G; Linardi M; Taylor AD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3230-7. PubMed ID: 24406938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge.
    Zhou G; Paek E; Hwang GS; Manthiram A
    Nat Commun; 2015 Jul; 6():7760. PubMed ID: 26182892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Role of Li⁺ Dissociation Level in Aprotic Li-O₂ Battery.
    Sharon D; Hirsberg D; Salama M; Afri M; Frimer AA; Noked M; Kwak W; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5300-7. PubMed ID: 26854802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
    Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K
    J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state.
    Korobkov I; Gorelsky S; Gambarotta S
    J Am Chem Soc; 2009 Aug; 131(30):10406-20. PubMed ID: 19588963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries.
    Pang Q; Kundu D; Cuisinier M; Nazar LF
    Nat Commun; 2014 Aug; 5():4759. PubMed ID: 25154399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries.
    García JM; Horn HW; Rice JE
    J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles.
    Pascal TA; Wujcik KH; Wang DR; Balsara NP; Prendergast D
    Phys Chem Chem Phys; 2017 Jan; 19(2):1441-1448. PubMed ID: 27982155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li(+)-molecule interactions of lithium tetrafluoroborate in propylene carbonate + N,N-dimethylformamide mixtures: an FTIR spectroscopic study.
    Zhang B; Zhou Y; Li X; Wang J; Li G; Yun Q; Wang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():40-5. PubMed ID: 24463238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions.
    Jiang B; Ponnuchamy V; Shen Y; Yang X; Yuan K; Vetere V; Mossa S; Skarmoutsos I; Zhang Y; Zheng J
    J Phys Chem Lett; 2016 Sep; 7(18):3554-9. PubMed ID: 27560477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li[B(OCH2CF3)4]: synthesis, characterization and electrochemical application as a conducting salt for LiSB batteries.
    Rohde M; Eiden P; Leppert V; Schmidt M; Garsuch A; Semrau G; Krossing I
    Chemphyschem; 2015 Feb; 16(3):666-75. PubMed ID: 25521464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties.
    Zhang C; Ueno K; Yamazaki A; Yoshida K; Moon H; Mandai T; Umebayashi Y; Dokko K; Watanabe M
    J Phys Chem B; 2014 May; 118(19):5144-53. PubMed ID: 24749650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life of superoxide in aprotic Li-O₂ battery electrolytes: simulated solvent and counter-ion effects.
    Scheers J; Lidberg D; Sodeyama K; Futera Z; Tateyama Y
    Phys Chem Chem Phys; 2016 Apr; 18(15):9961-8. PubMed ID: 26947132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.