These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
658 related articles for article (PubMed ID: 28425561)
21. Applying Physiologically Relevant Strains to Tenocytes in an In Vitro Cell Device Induces In Vivo Like Behaviors. Joo Kim J; Musson DS; Matthews BG; Cornish J; Anderson IA; Shim VB J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27379605 [TBL] [Abstract][Full Text] [Related]
22. Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Lu L; Mende M; Yang X; Körber HF; Schnittler HJ; Weinert S; Heubach J; Werner C; Ravens U Tissue Eng Part A; 2013 Feb; 19(3-4):403-14. PubMed ID: 22991978 [TBL] [Abstract][Full Text] [Related]
23. 4-D Flow Control in Porous Scaffolds: Toward a Next Generation of Bioreactors. Youssef K; Jarenwattananon NN; Archer BJ; Mack J; Iruela-Arispe ML; Bouchard LS IEEE Trans Biomed Eng; 2017 Jan; 64(1):61-69. PubMed ID: 26955013 [TBL] [Abstract][Full Text] [Related]
26. Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding. Gauvin R; Parenteau-Bareil R; Larouche D; Marcoux H; Bisson F; Bonnet A; Auger FA; Bolduc S; Germain L Acta Biomater; 2011 Sep; 7(9):3294-301. PubMed ID: 21669302 [TBL] [Abstract][Full Text] [Related]
27. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage. Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC Tissue Eng Part A; 2014 May; 20(9-10):1476-85. PubMed ID: 24377881 [TBL] [Abstract][Full Text] [Related]
28. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. McMahon LA; Reid AJ; Campbell VA; Prendergast PJ Ann Biomed Eng; 2008 Feb; 36(2):185-94. PubMed ID: 18080835 [TBL] [Abstract][Full Text] [Related]
30. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds. Subramanian G; Stasuk A; Elsaadany M; Yildirim-Ayan E Stem Cells Int; 2017; 2017():6072406. PubMed ID: 29375625 [TBL] [Abstract][Full Text] [Related]
31. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. Bleuel J; Zaucke F; Brüggemann GP; Heilig J; Wolter ML; Hamann N; Firner S; Niehoff A J Biomech Eng; 2015 Jun; 137(6):061009. PubMed ID: 25782164 [TBL] [Abstract][Full Text] [Related]
32. Decoupling the Effect of Shear Stress and Stretch on Tissue Growth and Remodeling in a Vascular Graft. van Haaften EE; Wissing TB; Rutten MCM; Bulsink JA; Gashi K; van Kelle MAJ; Smits AIPM; Bouten CVC; Kurniawan NA Tissue Eng Part C Methods; 2018 Jul; 24(7):418-429. PubMed ID: 29877143 [TBL] [Abstract][Full Text] [Related]
33. Morphomechanics of dermis-A method for non-destructive testing of collagenous tissues. Shah RG; Pierce MC; Silver FH Skin Res Technol; 2017 Aug; 23(3):399-406. PubMed ID: 27891678 [TBL] [Abstract][Full Text] [Related]
34. Development of a micromanipulator-based loading device for mechanoregulation study of human mesenchymal stem cells in three-dimensional collagen constructs. Au-Yeung KL; Sze KY; Sham MH; Chan BP Tissue Eng Part C Methods; 2010 Feb; 16(1):93-107. PubMed ID: 19368498 [TBL] [Abstract][Full Text] [Related]
35. Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models. Bono N; Pezzoli D; Levesque L; Loy C; Candiani G; Fiore GB; Mantovani D Biotechnol Bioeng; 2016 Oct; 113(10):2254-63. PubMed ID: 26987444 [TBL] [Abstract][Full Text] [Related]
36. Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. Dobson J; Cartmell SH; Keramane A; El Haj AJ IEEE Trans Nanobioscience; 2006 Sep; 5(3):173-7. PubMed ID: 16999242 [TBL] [Abstract][Full Text] [Related]
37. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Chen HC; Lee HP; Sung ML; Liao CJ; Hu YC Biotechnol Prog; 2004; 20(6):1802-9. PubMed ID: 15575715 [TBL] [Abstract][Full Text] [Related]
38. A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Bono N; Meghezi S; Soncini M; Piola M; Mantovani D; Fiore GB Ann Biomed Eng; 2017 Jun; 45(6):1496-1510. PubMed ID: 28224370 [TBL] [Abstract][Full Text] [Related]
39. An electro-tensile bioreactor for 3-D culturing of cardiomyocytes. A bioreactor system that simulates the myocardium's electrical and mechanical response in vivo. Feng Z; Matsumoto T; Nomura Y; Nakamura T IEEE Eng Med Biol Mag; 2005; 24(4):73-9. PubMed ID: 16119216 [No Abstract] [Full Text] [Related]
40. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels. Huang AH; Lee YU; Calle EA; Boyle M; Starcher BC; Humphrey JD; Niklason LE Tissue Eng Part C Methods; 2015 Aug; 21(8):841-51. PubMed ID: 25669988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]