These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28425703)
1. Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li-O Mohazabrad F; Wang F; Li X ACS Appl Mater Interfaces; 2017 May; 9(18):15459-15469. PubMed ID: 28425703 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical Mesoporous/Macroporous Co-Doped NiO Nanosheet Arrays as Free-Standing Electrode Materials for Rechargeable Li-O Wang H; Wang H; Huang J; Zhou X; Wu Q; Luo Z; Wang F ACS Appl Mater Interfaces; 2019 Nov; 11(47):44556-44565. PubMed ID: 31663715 [TBL] [Abstract][Full Text] [Related]
4. Pore-Scale Simulations of Porous Electrodes of Li-O Wang F; Li X ACS Appl Mater Interfaces; 2018 Aug; 10(31):26222-26232. PubMed ID: 30009605 [TBL] [Abstract][Full Text] [Related]
5. Monodispersed Ru Nanoparticles Functionalized Graphene Nanosheets as Efficient Cathode Catalysts for O Wang L; Dai W; Ma L; Gong L; Lyu Z; Zhou Y; Liu J; Lin M; Lai M; Peng Z; Chen W ACS Omega; 2017 Dec; 2(12):9280-9286. PubMed ID: 31457440 [TBL] [Abstract][Full Text] [Related]
6. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709 [TBL] [Abstract][Full Text] [Related]
7. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
8. Research on Effective Oxygen Window Influencing the Capacity of Li-O2 Batteries. Jiang J; Deng H; Li X; Tong S; He P; Zhou H ACS Appl Mater Interfaces; 2016 Apr; 8(16):10375-82. PubMed ID: 27029322 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962 [TBL] [Abstract][Full Text] [Related]
10. Effect of the Activation Process on the Microstructure and Electrochemical Properties of N-Doped Carbon Cathodes in Li-O Li S; Wang M; Yao Y; Zhao T; Yang L; Wu F ACS Appl Mater Interfaces; 2019 Sep; 11(38):34997-35004. PubMed ID: 31469535 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications. Kim H; Kim TY; Roev V; Lee HC; Kwon HJ; Lee H; Kwon S; Im D ACS Appl Mater Interfaces; 2016 Jan; 8(2):1344-50. PubMed ID: 26698560 [TBL] [Abstract][Full Text] [Related]
12. Integrated solid electrolyte with porous cathode by facilely one-step sintering for an all-solid-state Li-O Li C; Liu Y; Li B; Zhang F; Cheng Z; He P; Zhou H Nanotechnology; 2019 Sep; 30(36):364003. PubMed ID: 31100750 [TBL] [Abstract][Full Text] [Related]
13. Influence of Ion Diffusion on the Lithium-Oxygen Electrochemical Process and Battery Application Using Carbon Nanotubes-Graphene Substrate. Levchenko S; Marangon V; Bellani S; Pasquale L; Bonaccorso F; Pellegrini V; Hassoun J ACS Appl Mater Interfaces; 2023 Aug; 15(33):39218-39233. PubMed ID: 37552158 [TBL] [Abstract][Full Text] [Related]
14. Operando observation of the gold-electrolyte interface in Li-O2 batteries. Gittleson FS; Ryu WH; Taylor AD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060 [TBL] [Abstract][Full Text] [Related]
15. Probing the Reaction Interface in Li-Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity. Huang J; Tong B; Li Z; Zhou T; Zhang J; Peng Z J Phys Chem Lett; 2018 Jun; 9(12):3403-3408. PubMed ID: 29864272 [TBL] [Abstract][Full Text] [Related]
16. High-Capacity and High-Rate Discharging of a Coenzyme Q Zhang Y; Wang L; Zhang X; Guo L; Wang Y; Peng Z Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226435 [TBL] [Abstract][Full Text] [Related]
17. Influence of Enhanced O Wan H; Mao Y; Liu Z; Bai Q; Peng Z; Bao J; Wu G; Liu Y; Wang D; Xie J ChemSusChem; 2017 Apr; 10(7):1385-1389. PubMed ID: 28133941 [TBL] [Abstract][Full Text] [Related]
18. Understanding Reaction Pathways in High Dielectric Electrolytes Using β-Mo Wu M; Kim JY; Park H; Kim DY; Cho KM; Lim E; Chae OB; Choi S; Kang Y; Kim J; Jung HT ACS Appl Mater Interfaces; 2020 Jul; 12(29):32633-32641. PubMed ID: 32584023 [TBL] [Abstract][Full Text] [Related]
19. An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries. Højberg J; McCloskey BD; Hjelm J; Vegge T; Johansen K; Norby P; Luntz AC ACS Appl Mater Interfaces; 2015 Feb; 7(7):4039-47. PubMed ID: 25625507 [TBL] [Abstract][Full Text] [Related]
20. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]